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Abstract

This paper describes math as enrichment to the modern mind, both
in the forms of intellectual advancement as well as creative development.
Not unlike language, math uses abstractions as a means of communication
and allows a kind of “speaking without thinking”. If mathematics truly
is a kind of second language, it is worthwhile to understand the ways
in which it develops within individuals and to examine at what age we
actually begin to understand it. This paper reviews prominent views on
these topics and concludes that, although infants possess a rudimentary
understanding of mathematics, further research is needed to identify the
exact age at which this understanding develops, and a study examining
mathematical thinking among infants under the age of 4 months would
be especially useful in advancing this area of inquiry.

1 Introduction

Numerical mathematics is a crucial tool used for both qualitative and quantita-
tive analysis of several different fields including the modern sciences, the arts, as
well as history [ea91]. This paper describes math as enrichment to the modern
mind, both in the forms of intellectual advancement as well as creative develop-
ment. There are a few eclectic ideas discussing the importance of mathematics
and the significance it holds in our daily life. Lakoff and Núñez [Núñ00] take a
more philosophical approach by describing math as more than just symbols and
numbers. This paper follows that math is built from the ideas that transform
these symbols into real world problems alongside their appropriate solutions.
As such, math and cognitive sciences go hand in hand: Mathematics is not
just a study; it is a philosophy that improves our critical thinking as well as
problem solving skills ( [Lak00]) Another paper by Wakefield [Wak00a] argues
that math is like a second language. Harley [Har95] defines language as “a sys-
tem of symbols and rules that enable communication.” Following this definition,
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math has no trouble qualifying as a second language. Wakefield theorizes that,
like language, math is a skill that can be developed and improved upon with
practice that also makes use of uniform symbols and rules. The paper states
that, not unlike language, math uses abstractions, albeit in the form of num-
bers rather than words, as a means of communication. It also identifies the need
for intuition and “speaking without thinking” as a similarity in both language
and mathematics. This makes us question, if mathematics truly is a second
language, is its development within individuals similar to that of language? If
learning mathematics also requires intuition, at what age do we actually begin
to understand it?

There are three distinct views on the age of numerical and arithmetic de-
velopment (Cohen and Marks, 2002). Piaget [Pia41] followed a constructivist
view, splitting development into four distinct stages: The sensorimotor stage
from birth to 2 years of age. He theorized that, in this stage, children learn all
things based on experience, or trial and error. They are incapable of anything
more than basic motor movements. In stage two, or the preoperational stage,
from 2 to 7 years of age, children develop language, memory and imagination.
Their intelligence is intuitive, as they begin to make use of symbols of mathe-
matics. The concrete operational stage from 7 to 11 years of age is when they
actually begin to manipulate symbols and learn to apply and perform mathe-
matics. The formal operational stage is the last one, indicating that the child
can now apply abstract concepts of mathematics to the real world. Piaget was a
firm believer of mathematics and the number concept developing only through
prior experience with sensorimotor skills and intelligence.

In 1983, Kitcher argued against mathematical apriorism (i.e. mathemati-
cal knowledge gained independent of experiences), and supported the view of
mathematical empiricism (i.e. mathematical knowledge gained through learn-
ing). Not unlike Piaget, he theorized the fact that children learn about numbers
and mathematics mainly through learning and prior experience. However, he
believed that this learning is facilitated by observations of numerical transfor-
mations and witnessing the possibilities and consistencies between events taking
place, rather than sensorimotor skills and intelligence. He argued against the
theory stating that the study of mathematics requires pure thought (i.e. knowl-
edge not gained through observations). However, in recent years, a more nativist
view has been developed by Wynn [Wyn92], who argued that infant sensitivity
to numbers is innate, and could be portrayed through their understanding of
complicated numerical situations from a very young age. She argues against
both Kitcher and Piaget, and is a firm believer of mathematical apriorism.

Based on the opposing theories discussed above, this paper will serve to
provide evidence for mathematical apriorism; through the discussion and meta-
analysis of important studies, both new and old, this paper will highlight whether
or not infants possess a rudimentary understanding of mathematics and num-
bers. By the end of this paper, the evidence provided would reject some of the
above theories.

To help achieve the goal of discovering whether babies have a rudimentary
understanding of mathematics, in this paper we will focus on the development
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of three distinct but interrelated concepts of mathematical abilities that are
of interest to developmental researchers: discrete quantification (Lynn, 2004),
continuous quantification [Mix02] and mathematics (Wynn, 1992). Discrete
quantities refer to those that can only take certain fixed values (i.e. shoe sizes
and the number of students in a class) as compared to continuous quantities
that refer to those that can take any value (i.e. height and weight). This paper
follows that, by analyzing infant understanding of discrete quantities, we are
able to distinguish how individuals comprehend the arrays of smaller and larger
numerical representations and how that is associated with the development of
advanced cognitive functions. While discrete quantification discusses the rep-
resentation of smaller and larger sets of numbers, continuous quantification in-
volves the discrimination between volumes, areas and depths. Learning about
how we develop a sense of continuous quantity may aid us in understanding the
importance of the knowledge we have of the everyday interactions we have with
our environment [Sim95] The application of mathematics involves an intricate
number of cognitive skills that develop with practice and precision [But05]. It
has also been determined that a stronger understanding of numbers (i.e. discrete
quantities) and the concepts of volume and surface area (i.e. continuous quanti-
ties), builds the foundation required to have an extensive understanding of the
study of mathematics [Cir16]. But do we gain all our mathematical knowledge
through practice only as we grow older, or do we possess some perceptual and
advanced abilities as infants that facilitate our comprehension of numbers and
math? By what age can we actually understand and perform mathematics?

The question of whether or not infants understand numbers has sparked
much controversy over the past few decades [Wak00b]. Researchers continue to
conduct experiments and delve more into the depths of understanding infants’
numerical capacities and the extent to which they can develop and grow [MW04]
[MC06]. Through the course of this paper, we will discuss the significance of
discrete and continuous quantification in human infants with the main aim of
discovering whether or not they play a role in the development of mathematical
abilities.

2 Discrete Quantity

As we have discussed previously, discrete quantity refers to those quantities
that can only take definite, fixed values (i.e. how many). For the purpose of
this paper, discrete quantification will refer to infants’ understanding of arrays
of numbers (i.e. a number sense). Initial evidence indicated that all humans
have established a number sense (i.e. a sense of “how many”) by the time
they are approximately 5 years old [Fei04]. It is now well-accepted in the field
that even 2-4 year olds have a basic understanding of number concepts [Sta80].
The ability to discriminate between small number arrays in 2-4 year olds has
raised the question of whether younger infants possess this ability too. A study
in 2005 [Xu03] has supported this claim by showing evidence that infants are
capable of discriminating between number arrays and possess a “number sense”.
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In 1980, Starkey and Cooper conducted a violation-of-expectation experi-
ment to show that infants are capable of discrete quantification based on their
discrimination of small sets of visual arrays. The findings indicate that there
is a precursor present, during infancy, before the onset of verbal counting in
children. In this experiment, 5-month-old infants were initially habituated to
arrays containing a set number of dots and then subsequently, in the post-
habituation period, they were made to look at arrays containing a different
number of dots. Researchers found that infants showed significant dishabitu-
ation when they were shown different numbers of dots, clearly indicating that
5-month-old infants were able to discriminate between small sets of arrays. How-
ever, the experiment also concluded that infants showed no dishabituation to
the arrays containing a larger set of numbers indicating that infants are not able
to discriminate between larger number arrays. This finding holds true even for
2-year-old infants who are able to perceive arrays containing up to three dots,
but cannot perceive those with a larger number of dots [Mil83]. The researchers
conducting this study showed evidence supporting the theory of infants being
capable of discriminating between small number arrays (i.e. discrete quantities).
Just the fact that infants of such a young age (5 months) could discriminate
between various discrete quantities shows that they already possess a number
sense and discrete quantification.

In tandem with this, another study in 2003 indicated that infants were capa-
ble of number discrimination from a very young age (Lipton and Spelke, 2003).
The results show that 6-month-old infants were able to discriminate between 8
and 16 sets of sounds but not between 8 and 12 sets of sounds. This study shed
light on the importance of the ratio between the number of sets of sounds played,
as a discriminator of infant’s ability to distinguish between discrete quantities.
The results indicate that while 6-month-old infants have the ability to distin-
guish between sounds in a 2.0 ratio(i.e. 8 and 16 sets of sounds respectively),
they lack this ability when the ratio is 1.5 (i.e. 8 and 12 sets of sounds respec-
tively). When the same experiment was repeated with 9-month-old infants by
the same researchers, it yielded shocking results: It was found that while they
could discriminate between sets of sounds in a 2.0 ratio, they could also discrim-
inate between sounds in a 1.5 ratio. However, when the ratio was smaller, once
again, even 9-month-old infants were unable to distinguish between the sets of
sounds. This study provides evidence for “number sense” or discrete quantifi-
cation increasing with age, whilst still highlighting that this ability stems from
a young age of 5-6 months.

Taking into account the study conducted by Lipton and Spelke (2003), an
experiment was conducted by the same researchers in the same year, to discover
whether the theory for infant discrimination of discrete quantities increasing
with age held true for the same ratios but with even larger sets of number arrays.
Since it had already been established that infants aged 6 months can distinguish
between sets of arrays with a 2.0 ratio, this study repeated the same process
with 16 and 32 sets of sound. The results showed that infants could successfully
discriminate between the sounds, as measured by the violation-of-expectancy
paradigm through infant looking time. This further supports the theory of
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infants’ ability to distinguish between discrete quantities increasing with age,
also proving that this theory holds true for much larger number arrays as well.
Infants as young as 6 months old have the capability of distinguishing between
most sets of numbers with a 2.0 ratio, regardless of how large the numbers are.

The aforementioned research shows that we develop a strong sense of nu-
merical discrimination and discrete quantification right from infancy. The fact
that infants have the ability to discriminate between sets of numbers in a 2.0
ratio even when the numbers are large (i.e. 16 and 32 sets of sounds) indicates
that they possess advanced cognitive functions and numerical abilities from the
age of 5-6 months (Lipton and Spelke, 2003). The evidence put forth by Lipton
and Spelke as well as Gelman and Gallistel starkly contrasts the constructionist
view put forth by Piaget (1952). If infants are capable of discriminating between
discrete quantities and sets of numbers from the time they are 5 months old,
it is evident that they don’t have to be over 7 years of age to comprehend the
concept of numbers or possess a “number sense” as Piaget suggested. While we
can argue against Piaget’s constructivist theories, it remains unclear whether
the theories put forth by Wynn (1992) and Kitcher (1983) can be supported
with evidence or not. The fact that infants are capable of performing advanced
numerical functions like the discrimination between number arrays, could indi-
cate that they gained this knowledge through experiences and observations of
numerical transformations as Kitcher argued. However, it could also support
Wynn’s nativist view who argued that infant sensitivity to numbers is innate
and independent of experience. However, regardless of which theory can be
deemed most appropriate given the current evidence, it can be safely asserted
that infant’s from the age of 5 months already possess advanced cognitive and
numerical functions which enables them to distinguish between sets of number
arrays in a 2.0 ratio, regardless of how large the numbers are (Lipton and Spelke,
2003).

As our “number sense” continues to develop as we age, it is deep rooted
within us from the time we are approximately 5 months old. While researchers
don’t tend to argue the theory of infants’ understanding of discrete quantifica-
tion, it has furthered their curiosity into discovering what else infants can be
capable of. Although they possess the ability to distinguish between sets of
numbers in a discrete quantity, are they able to further that ability and dis-
criminate between continuous quantities too? Can they then integrate these
concepts to actually comprehend mathematics from the age of 5-6 months?

3 Continuous quantity

While it is now established that infants possess an understanding of numbers,
researchers continue to explore the ability of infants to distinguish between
larger and smaller quantities as a whole, rather than just individual number
arrays (i.e. continuous quantities) [Fei04]. Experiments have been developed
to gauge spontaneous infant understanding of the concepts of “more and less.”
While studies on infant discrimination of discrete quantities only had infants
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distinguish between the number of items, studies delving into infants’ under-
standing of continuous quantities (i.e. how much), record infant choice when
factors such as volume, surface area and length are changed [Fei04]. If infants
can interpret quantities and volumes of substances, their overarching cognitive
framework may already be very developed, further supporting the ideas put
forth by Wynn (1992) and Kitcher (1983) who argued that infants possess rudi-
mentary mathematical abilities from a young age. If infants are incapable of
discriminating between continuous sets of quantities, the constructionist theory
put forth by Piaget may be the most accurate, as he believed that children gain
these abilities very gradually as they grow older. By making the distinction
of whether infants can discriminate between continuous quantities or not, re-
searchers can be one step closer to interpreting how advanced the mathematical
capabilities of infants truly are.

Some researchers argue that continuous quantification does not require at-
tention to a certain number of individual arrays (e.g. dots, sounds) [Cle01]
but rather can be measured by using overall amounts such as spatial extent
(i.e. surface area) or contour length (i.e. the sum total of the perimeters of
the individual objects in the set). Clearfield and Mix (1999) habituated two
groups of infants to sets of two or three squares of the exact same size. In the
post-habituation period, both groups saw a different display: One saw a famil-
iar number of squares but a change in the spatial extent that was portrayed
through a change in the overall contour length, while the other saw a different
number of squares altogether while the contour length remained constant. The
principal finding was that infants looked significantly longer at the stimulus with
the changed contour length rather than the one with the different number of
squares. This suggests that infants are more sensitive to a change in continuous
quantity (spatial extent, area) rather than one in discrete quantity. Moreover,
infants are sensitive and responsive to both: changes in discrete and continuous
sets of arrays.

In a similar study conducted to confirm whether infants are more responsive
to a change in continuous quantity over a change in number, 5-month-old infants
were shown simple situations using dolls of different sizes [Fei04]. They were
initially habituated to one large three-dimensional doll. In the post-habituation
period, they measured infant looking time toward one small object or two small
objects. In the second condition, they were habituated to two small objects and
then shown displays with either one or two big objects. The results displayed
that infants dishabituated to both conditions; they reacted to both a change in
number (i.e. condition one) and a change in mass (i.e. condition two). However,
infant looking time was much higher when the condition displayed a change in
the mass of the doll. This further showcased infants’ preferences in understand-
ing of continuous quantities (i.e. mass) over discrete quantities (i.e. number).
The fact that infants show sensitivity toward a change in the mass of objects
from such a young age could indicate that they have a stronger understanding
of numbers and mathematical concepts like volume, surface area and mass than
researchers have previously accounted for. This, in turn, could imply that hu-
man infants do possess a rudimentary understanding of mathematics from such
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a young age.
While the experiment above conducted by Feigelson and Spelke indicates

that infants show greater preference toward changes in continuous quantity over
discrete quantity, there have been some questions raised regarding the accuracy
of the experiment. It remains unclear whether variables such as contour length
were taken into account while performing the experiment. Variables such as
contour length are likely to vary with number unless they are explicitly con-
trolled for [Kar69]. Therefore, the reason infants showed a preference toward
a change in continuous quantity over discrete quantity could be because there
was more than one variable being changed in the situation relating to a change
in continuous quantity (i.e. mass and contour length could have both been
altered).

In order to control for other continuous variables, and directly compare in-
fant preference of continuous v/s discrete quantities, in 1995, Fagan and Miranda
conducted an experiment comparing infant looking time toward two pairs of dis-
plays: one compared objects of different numbers with the same size and the
other compared objects of different sizes but the same number. The overall
mass of both displays was the same and the contour length was controlled for.
The results yielded that infants preferred to look at the display comparing the
continuous quantities (i.e. size) rather than the display comparing the number
of items all of the same size (i.e. number). This confirms that infants display a
direct preference toward changes in continuous quantities over discrete quanti-
ties. By displaying this preference, infants prove that they are capable of more
complex cognitive functions and skills. This, in turn, makes them more likely
to be able to perform mathematics as well.

In turn, these findings continue to support both Wynn’s and Kitcher’s inde-
pendent views following that infants are capable of complicated cognitive func-
tions from a young age, be it innate or through experiences and observations of
numerical transformations. Once again, it seems as though all the research dis-
played above contradicts Piaget’s constructivist theory following that children
can only begin to comprehend mathematics and develop even the most basic
“number sense” in the preoperational stage from 7-11 years of age.

It can now be asserted that, through an understanding of continuous quanti-
ties such as volume, contour length and mass, infants are one step closer toward
comprehending mathematics. As previously mentioned, volume and surface
area,amongst other things, are important concepts that build the foundation of
the study of mathematics. By showing a direct preference toward more compli-
cated change (i.e. volume over number) human infants are proving that their
cognitive framework and capabilities are far more advanced than previously ac-
counted for. This raises the question: if infants have an understanding of both
continuous and discrete quantities and can identify changes in them, are they
also able to apply these concepts to more complex mathematical manipulations
in the real world?
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4 Mathematics

While it can now be established that infants possess an understanding for both
discrete and continuous sets of data, it is important to discuss how this abil-
ity impacts their mathematical skills as well. [Fra17] describes mathematics as
the distinction between discrete and continuous data. This paper implies that
the foundations of math rely on one’s ability to correlate discrete and contin-
uous data. Discrete mathematics involves concepts, techniques and skills that
contrast those required by continuous mathematics. However, the ability to
discriminate between the two “lies at the heart of mathematics.”

As asserted in the previous sections of this paper, infants’ perception of dis-
crete and continuous quantities are factors that could impact their mathematical
abilities as well. A study conducted by Butterworth in 2005, evaluated the evi-
dence of infants’ mathematical abilities rising from specific cognitive skills they
developed through their understanding of numbers (i.e. their “number sense”).
The researchers concluded that the foundations of mathematics depend upon
one’s understanding of numbers and the operations these numbers can fit into.
General mathematical operations like addition, subtraction, multiplication and
division can be defined in terms of sets of numbers or discrete quantities. How-
ever, more complex mathematical tools and techniques such as geometry and
calculus require an understanding of continuous quantities such as length, mass
and volume as stated by Franklin in 2017. As infant cognitive functions develop
through the improvement in their ability to decipher changes in both discrete
and continuous quantities, are they growing one step closer toward applying and
performing mathematics?

In 1992, Wynn extended the line of investigation surrounding infants’ com-
prehension of numbers and mathematics by performing experiments to discover
their reactions to simple addition and subtraction problems. Initially, 5-month-
old infants were familiarized to 2 pretrials: a presentation of one doll and then
a presentation of two dolls, and then vice versa. Infants were then randomly
assigned one of two situations: addition (1+1) or subtraction (1-1). Regardless
of which situation they were assigned, they were shown two presentations. One
presentation was of the right solution to the problem, and another was of an
incorrect solution (i.e. 1-1=1 or 1+1=1). After the course of the study, Wynn
reported that infants tended to look longer at the ‘incorrect’ solution rather
than the ‘correct’ solution. She asserted that this was due to the violation-of-
expectation paradigm that stated that infants typically look longer at situations
that surprise them than those that meet their expectations. Based on these re-
sults, it can be established that infants possess a rudimentary understanding of
simple mathematical problems manifested through a longer looking time when
shown incorrect mathematical problems. Wynn argued that infants have an
innate sense of numbers and mathematics, and can ‘calculate the solutions of
simple arithmetical operations on a small number of items.’ If Wynn’s theory
were true and if infant understanding of mathematics truly is innate, then even
younger infants (those below the age of 4 months) should be able to process
and perform simple mathematical processes. While there are studies arguing
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that infants aged 4 months possess the ability to discriminate between sets of
numbers in an increasing order, not enough studies have been conducted as of
yet testing infants below the age of 4 months.

After Wynn’s experiment, more studies began focusing on infant compre-
hension of mathematics [MW04] [MC06]. For example, in contrast to Wynn’s
innate and numerical approach, Simon [Sim95] argued that there could be a
larger number of factors that influenced infant looking time in Wynn’s experi-
ments: one of such being memory. While both predicted that infants would look
longer at the events that violated their expectancies, Simon argued that there
were other possible reasons for this. Although infants had an understanding of
the logic surrounding Wynn’s experiments (i.e. when more input is added, the
output should be more as well), they didn’t necessarily understand the exact
value of the output in a given situation. If this were true, then while infants
had a rudimentary understanding of the concept of numbers, they may not pos-
sess the ability to calculate. However, refuting this claim, Wynn argued that
since the infants had already been familiarized with the stimuli of both two and
one doll presentations, and only one number was changed each trial (i.e either
1+1=2 or 2-1 =1), infants had to have possessed precision and understanding
to be able to distinguish between sets of such small values. This shows that
through their understanding of numbers and quantities, infants are capable of
advanced and precise cognitive functions enabling them to distinguish between
number arrays with tiny sets of values.

A similar meta analysis conducted to evaluate the reliability of Wynn’s orig-
inal findings revealed a high summary effect size of d = +0.34, supporting the
theory of infants fixating toward ‘mathematically incorrect’ numbers of items,
highlighting their rudimentary understanding of mathematics [Chr17].

Another study tested alternative explanations regarding the dishabituation
of infants that looked longer at the unfamiliar solutions. These explanations
tested the theory of how infants’ understanding of objects and their behavior
may be factors that could have affected their performance in earlier experi-
ments [Koe97]. One such experiment examined the possibility that earlier re-
sults reflect the infant familiarization effect: Although when infants have been
familiarized to certain stimuli they typically prefer novel stimuli in subsequent
choice tests, there has been evidence of infant familiarity preferences (i.e. they
prefer previously seen displays). In the early 2000’s a few studies provided in-
fants with varying levels of exposure to one or two visual arrays before showing
them standard addition and subtraction events, with both correct and incorrect
solutions [CM02]. These experiments used 8 familiarization trials in compar-
ison to the 2 pre-trials conducted by Wynn, where infants were familiarized
to only one or two objects. The results yielded no familiarization preferences
for the ‘correct’ stimulus; instead the results supported Wynn’s results, show-
ing an increased looking time toward the incorrect stimuli. These experiments
only further support Wynn’s hypothesis and show evidence supporting infants’
mathematical capabilities.

Therefore, while it remains unclear whether infants’ understanding of math-
ematics is innate (as theorized by Wynn) or developed at a very young age
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through observations and experience (as theorized by Kitcher), it can be as-
serted that infants are capable of processing and understanding mathematics
from as early on as the age of 4 months. However, despite a growing approval
for the theories put forth by both Wynn and Kitcher, there remains a lot of de-
bate regarding which of these two theories can be deemed more accurate [Cle06].

5 Discussion

Prior research suggests that infants possess an understanding of the concept of
numbers or discrete quantity [Sta80]. They also display an ability to understand
area, volume and length as a means to distinguish between the concepts of
“more” and “less” [?]. Therefore, the fact that babies (5 months of age) can
distinguish between small number arrays [Xu03], observe changes in quantities
and understand simple mathematical operations (addition and subtraction) is
a clear indicator of their mathematical capabilities. However, the overall extent
and capacity of infants’ mathematical abilities remains uncertain. Moreover, the
age at which they develop this understanding remains unclear as well. While
some researchers support the theory of infants’ mathematical capabilities being
present from birth [Wyn92], others believe that they gain this understanding
through experiences, observations and other external factors [Cle01].

In this paper, we discussed three differing theories about the age at which
children begin to understand mathematics: Piaget followed a constructionist
view, splitting development into 4 distinct stages. He theorized that children
only began to process and apply mathematics in stage three (i.e. the concrete
operational stage), from the ages of 7-11. He theorized that children’s appli-
cation of mathematics was dependent on the sensorimotor skills they acquired
in stage one of their development (i.e. the sensorimotor stage). Phillip Kitcher
argued that although children understand mathematics through learning, this
learning has nothing to do with their sensorimotor skills, it is built by their
observations of the world around them. Both these theories imply that math-
ematics is not a skill that is present innately within children. It is developed
through learning, observations and interactions with the environment. How-
ever, as discussed through this paper, there has been a myriad of evidence
from many sources providing evidence justifying infants’ mathematical capa-
bilities [Cle01] [Wyn92]. Most of these papers support the theories put forth
by both Wynn and Kitcher. While we know that infants aged 4 months and
above possess the capabilities to perform advanced mathematical and cognitive
reasoning, it remains ambiguous whether infants below the age of four months
can also do the same.

Therefore, it can be concluded that, although infants possess a rudimentary
understanding of mathematics, the exact age at which this understanding de-
velops can only be asserted after further research is conducted on infants below
the age of 4 months’ abilities to comprehend mathematics.
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