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Abstract

The drift diffusion model has had great success as a
computational model to study the underlying processes of
sensory and value-based decision making and the diffu-
sion process may actually mimic how the brain integrates
evidence and makes decisions. Here I review recent ap-
plications and extensions of the drift diffusion model to
self-control, loss aversion, driving behaviour, racial biases
and reinforcement learning with the aim of finding out
whether the model is applicable to more cognitive tasks

1 Introduction

Decisions are ubiquitous. Every day, we make thousands of decisions, ranging
from automatic low-level tasks like whether or not to look at a section of the
screen to high-level tasks which require more deliberation like which movie to
watch. In the last thirty years, major progress has been made in understanding
how decisions are made in the brain.To explain any aspect of decision mak-
ing, experiments are designed and then computational models are built on this
experimental data. To make the models more cohesive and increase their ex-
planatory power, brain data is included to see how the deliberation corresponds
to activity in the brain. Out of a plethora of methods, electrophysiology1 and

∗Advised by: Julian Day-Cooney
1Extracellular Electrophysiology - A recording technique which involves the insertion of

electrodes into the brain. It measures the change in the electrical activity in the neurons near
the electrode and thus measures firing rate of neurons in spikes per second. It gives a great
temporal resolution making it a very powerful technique. However, it is an invasive method
and can only be used to measure the activity of a few neurons at a time.
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functional magnetic resonance imaging (fMRI)2 are specifically used to mea-
sure firing rates and to gauge where the decision-related brain activity is taking
place, respectively.

Many real-life decisions require accumulation of evidence and information,
either from the environment or from our memories, until it passes a threshold.
This accumulation-to-threshold is explained by a group of models called sequen-
tial sampling models. Through extensive research, one of these models stands
out as the most effective: The Drift Diffusion Model (DDM).

The DDM (Ratcliff,1978) [Rat78] postulates that decisions are made by the
accumulation of noisy evidence over time which terminates once it reaches a
threshold or a bound. The decision threshold is the amount of evidence needed
to choose an alternative and make a decision. In the DDM, there is only one
accumulation process whereas in other accumulator models the evidence for
each response is accumulated independently. These models are like a race.
The accumulation process that reaches the threshold first is what the subject
decides. In the DDM, evidence accumulation is competitive. Figure 1 shows the
drift diffusion process for a perceptual discrimination task as well as an ideal
accumulator model (also called a race model).

The beauty of the DDM is that the brain makes decisions as it has been
portrayed in Figure 1. The DDM is not just a model made to explain decision
making but could be how the brain integrates evidence and makes decisions.
The simple DDM is defined by four parameters, the starting point, the drift
rate(µ) i.e. the rate of evidence accumulation, the value of the bounds (a and
b), and the non-decision time, also called latency time which is the sum of the
time before initiation of the accumulation and the time taken for action once a
decision is reached. (Ratcliff,1978) [Rat78]

This review will begin with an in-depth description of the DDM, its advan-
tages and the research on the neuronal populations representing the subparts of
the DDM. Following this, I will discuss the applications of the DDM to different
domains, with the aim of looking at its performance in more cognitive tasks.
The review will conclude with possible future avenues.

1.1 Why DDM?

Certain aspects of the Drift Diffusion Model have made it very successful in all
its applications so far. This section looks at the advantages of using the DDM
as an analytic tool. The DDM explains response times (RTs) very well for
both correct and error responses. It helps us visualize the effects of attributes
like task difficulty and time pressure on the RTs, which serve as an important
tool in analyzing behaviour. This explanatory power helps to differentiate the

2Functional Magnetic Resonance Imaging (fMRI) - An imaging technique that measures
brain activity by detecting changes in blood flow. It is used to measure BOLD signals (blood-
oxygen-level-dependent signals). It gives us great spatial resolution and can provide a clear
image of how brain activity is localised. Another advantage is that it is non-invasive and is
a relatively safe technique. However, it gives poor temporal resolution and does not show us
moment to moment changes in activity.
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Figure 1: A) z is the starting point for the process, a and -b are the thresh-
olds. In the figure, there are two wobbly lines, which represent the decision
process. The decision is encoded in a decision variable and this variable
‘drifts’ towards a threshold. A decision variable is a quantity which defines
the possibility of one alternative over another and is driven by the integra-
tion of evidence over time. It can be thought of as a link between sensory
evidence and the final choice. The straight lines connecting the starting
point z and the thresholds are the drift rates. The image at the top is
represented by the blue lines while the image at the bottom is represented
by the red lines. In the figure, the blue lines have a much larger drift rate
and as a result a short response time. Although intuitively we know that
easier decisions will be made faster, this figure and the DDM, in general,
gives us computational proof on the relation between decision difficulty and
response time. Figure adapted from Heekeren et al., (2008) [HMU08]B)
The graph adjacent to the race model shows two accumulation processes,
one for each response for the race models, whereas, in the DDM, there is
only one accumulation process which is a competition between the two al-
ternatives. Figure adapted from Summerfield and Koechlin,(2008) [SK08]
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DDM from other sampling models like random walk models and accumulators
which cannot model the RTs as accurately as the DDM (Ratcliff, 2004 [Rat04]).
Although these conclusions are intuitive (harder tasks will have longer RTs), the
DDM provides a computational framework for these conclusions. The response
times are captured by RT distributions. These distributions can be represented
by curves above their respective thresholds. The distribution encloses all the
possible RT values for a particular experiment and its shape shows the variability
in the response times and thus the variability in drift rates. The curves are
shifted or skewed when task difficulty is changed or a time pressure is applied.
Thus, the distributions help in giving an insight into the change in performances
when task attributes are altered. Another advantage the DDM provides is that
it explains the speed-accuracy trade-off well, (for an in-depth review see Bogacz
et al., 2010 [BWFN10]). Higher decision thresholds will lead to more accurate
answers since they require more evidence but will also lead to greater response
times. On the other hand, lower thresholds will lead to fast responses, however,
will result in a greater error rate. (see Figure 2A). Consider an investigation -
more solid evidence will lead to catching the correct perpetrator but will take
more time. However, quick justice could result in catching the wrong person.
The DDM also provides a better understanding of choice biases. Biases can
occur in two ways. First, there are starting point biases i.e. the starting point
is closing to one bound, thus the decision-maker is inherently biased towards
one decision. Second is the drift rate bias, in which the drift rate is higher for
one response, biasing the decision to that alternative. Figures 2B and 2C show
the effect of both these biases on the diffusion process.

2 Neural Correlates

While understanding the working of the brain is important, a major goal of
neuroscience has been to map these processes to underlying circuits in particular
regions of the brain. These regions are called neural correlates. This section will
look at various studies pinpointing the correlates for the different sub-process
of the diffusion process: evidence accumulation (drift rate), decision threshold,
starting point bias, and comparison of alternatives. To find neural correlates in
humans, the tool of choice would be fMRI, since it is non-invasive. However,
causal studies3 are also performed, giving more definitive proof that an area is
responsible for a sub-process. Using fMRI, Rolls et al., (2010) [RGD10] found
signatures in the dorsolateral prefrontal cortex (DLPFC) which could represent
evidence accumulation. Philiastides et al., (2011) [PAHB11] showed the causal
role of the DLPFC using trans-cranial magnetic stimulation.4 They found that

3Causal Studies - Causal techniques are used to find direct causal relationships between
brain regions and a specific function. Causal methods include inhibition of a particular area
by stimulation, pharmacological inactivation and lesion studies. They have great explanatory
power in finding neural correlates.

4Transcranial Magnetic Stimulation (TMS) - It is a non-invasive procedure in which neu-
rons in the brain are stimulated by a magnetic field which induces electrical activity in those
neurons.
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Figure 2: a)The relationship between the speed-accuracy trade-off and
the decision threshold. Lower thresholds can result in less accurate
decisions. b) This figure shows the effects of the starting choice bias
on the diffusion process. c)The effect of the drift rate bias on the dif-
fusion process (Figures adapted from Mulder et al., 2014 [MvMF14])

the drift rate was significantly reduced under the influence of the TMS while the
non-decision time was almost unaffected, thus, showing the role of the DLPFC
in evidence accumulation. Other studies have reported that areas like the frontal
eye field (FEF) and intraparietal sulcus (IPS) could be responsible for evidence
accumulation. (Basten et al., 2010 [BBHF10]; Ho et al., 2009 [HBS09]; Liu and
Pleskac, 2011 [LP11])

The lateral intraparietal area (LIP), a subdivision of the IPS, has been also
shown to represent sensory integration (Roitman and Shadlen, 2002 [RS02]).
At this time, research points to a frontoparietal network (a network of areas
in the frontal and parietal lobes of the brain) that is responsible for evidence
accumulation. Studies regarding the decision threshold have pointed to a fron-
tostriatal network which would include the anterior cingulate cortex (ACC),
striatum, and the pre-supplementary motor area (pre-SMA) as candidate areas
(Forstmann et al., 2008 [FDB+08]; Ivanoff et al., 2008 [IBM08]; Van Veen et
al., 2008 [VVKC08]; Winkel et al., 2012 [WvMR+12]).
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Kiani et al., (2014) [KCRN14] showed the response of neurons in the pre-
arcuate gyrus during Changes of Mind. A change of mind would be a sudden
change in the direction of the evidence accumulation. If the decision variable
is drifting towards the upper threshold, a change of mind can be seen in a
sudden reversal of direction towards the lower threshold. Mathematically, the
sign of direction changes. The firing rates of these neurons peaked just before
the saccade which could indicate the encoding of the decision threshold.

Various studies looking at value-based decision making have found encoding
of subjective value and choice bias in the orbitofrontal cortex (OFC) (Forstmann
et al., 2010 [FBD+10]; Padoa-Schioppa and Assad,2006 [PSA06]; Summerfield
and Koechlin, 2008 [SK08]). Other frontal areas such as the ACC, ventromedial
prefrontal cortex (VMPFC), and DLPFC have been shown to encode starting
point bias (Mulder et al., 2012 [MWR+12]). The above-mentioned areas have
also been shown to be responsible for the comparison of alternatives in choice
tasks (Hare et al., 2011 [HSC+11]; Hunt et al., 2012 [HKS+12]).

Figure 3 summarizes the current research in finding neural correlates. Each
dot in the figure represents a group of studies. The size of the dot represents
the number of studies conducted. Thus, the figure shows every study conducted
for the different parameters and sub-processes. The location of the dot shows
the areas that are responsible for a sub-process. The colour of the dot shows
the region of the brain the specific correlate is situated in and each region is
represented by a unique colour as shown in the legend.

3 DDM In Perceptual and Lexical Tasks

This section will delve into the two most successful domains of applications
of the DDM to behavioural data: perceptual tasks and lexical tasks. In the
realm of perceptual decisions, researchers have applied the DDM to a simple
dot motion-discrimination task (also called Newsome Dots or the Random Dot
Kinematogram) and a categorization task. In the RDK task, the subject is
shown a group of moving dots and needs to choose the average direction of the
dots by a saccade. This task gives great control over task difficulty. It introduces
motion perception and also requires the subject to compute the average motion
of the dots which requires a large amount of integration. Figure 4 shows an
RDK task.

Figure 1 shows an example categorization task, where the subject was re-
quired to place the given image in the house or the face category. This task
also gives great control over changing the difficulty of the task but also requires
evidence accumulation over time, and on the difficult trials, requires the com-
parison of the alternatives shown to the ideal response. For example, if the
image has a low contrast the subject would need to compare the image to an
ideal image of a face and that of a house and try to give the correct response.
Both these tasks have been successfully modelled by the DDM. (see Gold and
Shadlen, 2007 [GS07]; Heekeren et al., 2008 [HMU08] for an extensive review)

Ratcliff et al., (2004) [RMG04], showed the DDM applied to a lexical deci-
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Figure 3: Each dot is a separate group of studies. The size of the dot
gives the number of studies conducted in a particular region. Re-
gions have been highlighted as given in the legend. studies have been
conducted to find correlates for evidence accumulation. This figure
shows a frontoparietal network for the accumulation and a frontostri-
atal network for decision threshold. The starting point bias is almost
only encoded by frontal networks. However, areas can have multi-
ple functions and the distinctions are not always concrete. (Figure
adapted from Mulder et al., 2014) [MvMF14]

sion task. In this task, the human subject has to categorize the given stimuli
into words and non-words. The stimuli were variable and were taken from a set
of high-frequency words, low-frequency words, very low-frequency words, pseu-
dowords, and non-words. The model explained the RTs for, both correct and
error responses, and the probability of getting the decision correct very well for
all types of stimuli. (see Table 3 in Ratcliff et al., 2004 [Rat04])

Recently, these applications have been extended to look at aging and IQ
from a unique perspective. Studies have shown that older adults are slower
than young adults due to longer non-decision times and a higher boundary,
although age does not play a role in drift rate. This makes intuitive sense
since older adults are usually more cautious and the decision thresholds prove
this (Theisen et al., 2020 [TLvKV20]). Studies can also show how differences
in IQ can affect decisions. Subjects with a higher IQ have higher drift rates
but have almost equal non-decision times and boundary separations, as normal
subjects. (Ratcliff et al., 2010 [RTM10]; Ratcliff and Mckoon, 2011 [RM11]).
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Figure 4: An RDK task for a macaque monkey. The coherence of
motion can be changed trial to trial. The monkey has to gauge the
average motion and indicate its response by a saccade to one of the
two targets on the screen. (Figure adapted from Heekeren et al.,
2008) [HMU08]

Studies looking at sleep deprivation, clinical populations, alcohol consumption,
and reduced blood sugar have had success using a diffusion model analysis,
thus proving that the DDM can be clinically useful. (See Forstmann et al.,
2016 [FRW16] for an excellent review).

4 Extending the DDM to Economic Choices

This section will look at the modifications of the DDM for it to be applied
to subjective tasks. All the tasks mentioned in the paper so far have had a
defined correct response. This section will be an introduction into the domain
of value-based choice. As I stated before, the model looked at so far is the
simple DDM (sDDM) with 4 parameters. To extend the DDM to economic
and subjective choices its computational framework behind the model needs
to be modified. Milosavljevic et al., (2010) [MMH+10], compared the sDDM
with 3 of its variants – the simple collapsing barrier DDM (scbDDM) 5, the full
DDM (fDDM) 6, and the full collapsing barrier DDM (fcbDDM) 7, using the
Bayes Information Criterion 8. They found that the fDDM provided the best

5Simple Collapsing Barrier DDM (scbDDM) - It is a modification of the simple DDM in
which the bound values (a and b) decrease as time progresses thus reducing the amount of
evidence needed in the later stages of the trial. Just like sDDM it is defined by 4 parameters.

6Full DDM (fDDM) - Along with the 4 parameters of the sDDM it has an additional 4
parameters : a standard deviation parameter characterizing the noise in the accumulation
process, a starting point bias parameter(zm), a range of latency times giving the distribution
from which the latency time (non-decision time) is sampled every trial and a range of bias
giving the distribution of the bias parameter.

7Full Collapsing Barrier DDM (fcbDDM) - It is defined by the same 8 parameters as the
fDDM but now has collapsing barriers like the scbDDM.

8Bayes Information Criterion - BIC is a criterion used to compare different models for a
given set of data samples. It strikes a balance between model complexity and model fit. Lower
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quantitative description of their data and could be the model used by the brain.
They conducted this analysis on a subjective value task in which the subjects
had to choose between two food options.

However, the fDDM, as described in the paper, was suitable only for binary
choice and did not take attention or fixations into account. When we choose be-
tween many alternatives, we often foveate (position our fovea centralis, the part
of the eye with the sharpest vision) on the preferred option and this can bias
our choice. This was not incorporated in the fDDM. To change this, Krajbich
and Rangel, (2011) [KR11], proposed a novel drift-diffusion process for subjec-
tive multi-alternative decisions, the Attentional Drift Diffusion Model (aDDM).
Their model included a fixation bias and explained the data for both binary and
trinary value-based choices. The aDDM can also be extended to simple pur-
chasing tasks, in which subjects need to decide whether or not to buy a product
for the given price (Krajbich et al., 2012 [KLCR12]). The model explained RTs
for different sets of stimuli but also showed the adverse impact of visual fix-
ations. When subjects looked at the product more, they were more likely to
buy it. On the other hand, if they looked at the price for a longer period, they
were more likely to reject it. The effects of visual fixations and affection thus
seem to bridge the perceptual and economic domains together. Thus, we can
see that the DDM has been successfully modified to purchasing decisions and
value-based choices, both for binary and trinary choices. Attempts have been
made to extend the aDDM to quaternary choice (von Boguslawski and Mildén,
2015 [vBM15]), with mixed results. Although they have modeled choice well,
the sample size may be small and the results may not be very significant. Still,
it is another step towards modeling more complex tasks.

5 Cognitive Tasks

This section will look at novel applications of the DDM to more cognitive tasks.
The purchasing and value-based experiments talked about in previous experi-
ments were simplified accounts of real-life decisions. This section will address
experiments looking at more complex behaviors and decisions.

5.1 Self-Control

Berkman et al. (2017) [BHL+17], put forth an alternative model for self-
control. Rather than a competition between the impulsive and deliberative
processes, they defined self-control as a value-based choice between two alter-
natives. Rather than modeling self-control with dual-process models, they used
the drift diffusion model. By using the example of a dieter choosing between
a salad and a burger, they looked as self-control as a comparison between the
subjective values of two alternatives, thereby eliminating the need for a ‘control’
system. The decision would be governed by the values of the decision thresholds

the ∆ BIC score, better the model. It penalizes the model for having too many observations
and parameters and rewards the model for fitting the data well.
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and the two alternatives. Their model captures internal events like effort expen-
diture by incorporating it into the value-integration process. Effort can be an
opportunity cost that is compared with the benefits that an alternative pose.,
thus the task that needs more effort can be avoided, favoring the impulsive
option over the deliberative option. This view of self-control could lead to un-
derstanding why damage to prefrontal cortices, areas thought to participate in
evidence accumulation and comparison of alternatives, results in more impulsive
decisions. It can also lead to further research into the realms of goal-attainment
and motivation.

Figure 5: Subjective value accumulates over time just as sensory in-
formation does. The value of Action A accumulates rapidly but falls
over after some time whereas the value for Action B rises slowly but
ultimately reaches a higher point. A person with a lower decision
threshold would pick Action A and could have poor self-control. Un-
der time pressure, A would be the action chosen. However, for a
person with a higher decision threshold or with no time pressure, B
would be chosen. This explanation can be heightened by taking the
example of Action A being eating pizza and Action B as eating salad.
(Figure adapted from Berkman et al., 2017 [BHL+17])

5.2 Loss Aversion

Loss Aversion is one of the central tenets of Prospect Theory (Kahneman and
Tversky, 1979 [KT79]), which proposes that when faced with risk or uncertainty,
decision-makers are loss averse i.e. they place a greater weight on losses than
they do on gains. An experiment that highlights this is when decision-makers
are offered a gamble with a 50% probability to gain 11$ and a 50 % proba-
bility to lose 10$, they often reject the gamble. Despite the gamble having
a positive expected value, it seems unattractive and is rejected. Zhao et al.,
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(2020) [ZWB20], applied the DDM to this psychological phenomenon. They
modified the full DDM to incorporate the unequal weightage of losses against
gains but also incorporated a pre-valuation bias. This bias behaved similarly to
the starting point bias, and represented a predisposition towards rejection, by
being closer to the rejection bound (Figure 6). Since the starting point for the
diffusion process is closer to the rejection bound, the decision-maker is biased
towards rejecting the gamble. It takes less evidence for the decision variable
to cross the bound, thus the RTs for rejection will be shorter and the prob-
ability of rejection will be greater. This bias corresponds to prior experience
and introduces the concept of learning into the experiment. As they show in
their paper, during trial blocks with higher payoffs –i.e. trials in which the
possible gains were much greater than the possible losses, this pre-valuation
bias was closer to the rejection bound, meaning it took a larger gain to loss
ratio to convince the subject to accept the gamble, in this case, 1.83, whereas
in trial blocks with lower payoffs i.e. trials in which the possible gains were
almost equal to the possible losses, the pre-valuation bias was farther from the
rejection bound, meaning that it took a smaller gain to loss ratio to convince
the subject to accept the gamble ,in this case, a 1.25 gain-to-loss ratio. Thus,
they show the influence of prior gambles and the prior rewards on the current
gamble. Using the Deviance Information Criterion, a model criterion similar
to BIC which penalizes the model with greater variance, and thus uncertainty
in the data, they showed how the DDM outperforms older models explaining
loss aversion. Through the incorporation of a starting point bias, in the form
of the pre-valuation bias, their model captures the choice probabilities and the
RTs for both rejected and accepted gambles. Thus, the DDM has been success-
fully modelled for another task, more cognitive than those of the economic and
perceptual domains.

5.3 Driving Tasks

Recently, the DDM has been modified for different types of driving tasks.
Cooper and Strayer, (2008) [CS08] conducted an experiment to determine the
effects of cell-phone usage on driving. They used a 3D driving simulation during
which subjects were engaging in a conversation they found interesting using a
hands-free phone. Ratcliff and Strayer, (2014) [RS14] conducted an analysis on
this study using a one-boundary drift diffusion model (Figure 7A) and found
that distracted drivers have longer non-decision times and lower drift rates re-
sulting in longer response times and slower uptake of information. Thus, this
study provided computational proof as to why distracted drivers have higher
chances of being in a car crash.

Building on this, Daneshi et al., (2020) [DAT20] used a one-boundary DDM
to model time-to-collision to an obstacle. In this task, the subjects had to stay
on their trajectory for as long as possible but prevent collision with the lead
vehicle. (Figure 7B). They conducted this task with and without time pressure
and found that both the drift rate and the decision threshold were higher for the
trials with time pressure. This could mean that under time pressure drivers have
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Figure 6: A drift diffusion process for loss aversion. The pre-valuation
bias γ appears as a starting point bias towards the rejection threshold.
Since the distance from the thresholds is now unequal, rejection is
more likely and will have a shorter response time since it takes less
evidence to reach the threshold. (Figure adapted from Zhao et al.,
2020 [ZWB20])

greater evidence accumulation but also can be uncertain about their decisions
thus increasing their decision thresholds and their margins of safety.

Both the previous studies have looked at simple braking and driving around
tasks. The DDM has also been applied to more complex tasks such as accepting
or rejecting a turn at an intersection. Zgonnikov and Abbink,(2020) [ZA20]
used a modified full collapsing barrier DDM (fcbDDM) with variable drift rates
to model a driving task which had subjects accept or reject a left turn with
an oncoming car which could block them (Figure 7C). Evidence accumulation
involved gauging the distance from the oncoming car and its speed and using this
information to compute a time-to-arrival. Greater the time-to-arrival, greater
the probability to turn. They found a positive relationship between response
time and time-to-arrival (Figure 7D). Their model also accurately predicted
their data well. This modification of a variable drift rate could be of huge
importance to similar experiments that look at dynamic real-life scenarios. More
research into driving behaviours could have applications in computer-driven cars
and in making traffic interactions safer.

5.4 Racial Bias

In light of the increasing police brutality, researchers have tried to study racial
biases in police officers and trainees and regular people. A first-person shooter
task (FPST) has been developed for these studies. In the task, the participants
are instructed to shoot armed targets and to not shoot unarmed targets. The
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Figure 7: A) A one-boundary diffusion model for driving tasks. The pa-

rameters remain the same as the sDDM. Figure adapted from Ratcliff and

Strayer, (2014) [RS14] B) Participants have to stick to the yellow line for

as long as possible and need to drive around once the obstacle gets too

close. Figure adapted from Daneshi et al., (2020) [DAT20] C) The partic-

ipants are in the red car. The speed of the blue oncoming car is variable.

Participants have to decide whether or not to turn left. Figure adapted

from Zgonnikov and Abbink, (2020) [ZA20] D) The model predictions are

given by the dotted lines. They fit the data well. The probability to turn

increases with an increase in time to arrival and an increase in distance

from the oncoming car. The reaction time also shows a positive relation-

ship with time-to-arrival. Figure adapted from Zgonnikov and Abbink,

(2020) [ZA20]
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targets can be either Black or White men.
Using a hierarchical DDM 9, Johnson et al., (2017) [JHCP17] analysed an

FPST in which participants were rewarded for correct shooting decisions. They
found that participants had a starting point bias towards the to-shoot decision,
however, this was independent of race and can be explained by the rewarding
outcome for to-shoot decisions. Evidence accumulation was stronger to shoot
armed Black men than to shoot armed White targets, thus participants have a
higher drift rate when it comes to shooting armed Black men and this results
in shorter response time and a greater likelihood to shoot armed Black men.
Following this study, Johnson et al., (2020) [JSCF20] looked at the effects of
sleep deprivation and caffeine on racial biases. They found that subjects were
more likely to shoot unarmed Black men than unarmed White men and this
bias was not affected by either sleep deprivation or caffeine. Caffeine did not
mitigate the errors caused by sleep deprivation. It only reduced response times.
They also found that subjects set a wider threshold for White men than for
Black men, showing that they needed lesser evidence when it came to making
a decision when they were shown a Black man as the target. Surprisingly, they
found that overall, participants who were given a placebo had a higher starting
point to shoot White targets.

This study reaffirmed a conclusion that Johnson et al., (2017) [JHCP17] had
come to, proving that for unarmed targets, subjects had a lower drift rate for
Black men than for White men and for armed targets, had a higher drift rate
for Black men than for White men.

5.5 Reinforcement Learning

The DDMs looked at in the review so far have not incorporated an element
of learning into the process, however, the drift diffusion process modeled for
loss aversion hinted at the influence of past outcomes. Recently, the DDM has
been applied to learning tasks as well. These groups of models are called rein-
forcement learning drift diffusion models (RLDDM). They unify the DDM and
the theory of reinforcement learning (See Seo and Lee, (2012) for an excellent
review [SL12]). These models have been applied to probabilistic selection tasks
(PST), which present the participants with two options with the goal being to
pick the option with a greater probability to be rewarded. However, the partic-
ipants need to learn the probabilities and rewards of these options as the trials
go on. The simplest RLDDM has 4 parameters: a learning rate 10, threshold

9Hierarchical DDM – The HDDM analyzes the data at the population level rather than
at an individual level. This means that fewer trials can be conducted per participant, but
the parameters can easily be recovered and can still capture all the aspects of the data as the
simple DDM does.

10Learning Rate - The learning rate determines how sensitive the decision maker is to
previous outcomes. A learning rate that is too low is not optimal since the learning will be
very slow, however a learning rate that is too high will induce forgetting the outcomes that
happened a few trials back.
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Figure 8: The x-axis shows the 4 groups of patients: Patients with a
whole night’s sleep on a placebo, patients with a whole night’s sleep
on caffeine, patients who had not slept for 24 hours on placebo, and
patients who had not slept for 24 hours on caffeine. The top left
panel shows that subjects had wider thresholds for white men than
for black men. The top right panel shows that subjects, surprisingly,
had a starting point bias to shoot white men. The bottom left panel
shows the effect of sleep deprivation and caffeine. The bottom right
panel shows the drift rates for the different trials. All the negative
drift rates i.e. below the dashed lines are for unarmed targets while
those above the dashed lines are for armed targets. Thus, Black
armed men produced a higher drift rate in the participants while
subjects had a lower drift rate for unarmed black men than those for
white men. Figure adapted from Johnson et al., (2020) [JSCF20]

values, a scaling parameter vmod 11, which ensures that the difference in values
and probabilities for the two choices are transformed into an appropriate scale
in the DDM framework, and the non-decision time.

Fontanesi et al., (2019) [FGSR19] showed that the RLDDM can explain
both reaction times and choice probabilities very well. However, it also shows
the learning throughout the task and thus successfully combined the RL models
and the DDM (Figure 9).

The accuracy of the responses increased steadily and the RTs decreased
throughout the task, showing that the participants learnt the probability of

11Scaling Parameter - It is analogous to the drift rate in the DDM. It helps to convert the
effect of previous outcomes into an appropriate scale that can be incorporated into the DDM
framework.
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Figure 9: The top panels show the power of the RL models whereas the
bottom two represent the contribution of the DDM to the RLDDM.
Thus, two prominent theories can be unified to give a better account
of decision making, a) The accuracy increases as the trial number
increases thus showing the effect of learning on the task. b) The RT
decreases, once again showing the effect of learning. Figure adapted
from Fontanesi et al., (2019) [FGSR19]

the rewards and improved their performance. They also conducted an analysis
to find out which RLDDM explained the data the best. The RLDDM can be
modified by having different learning rates for negative and positive outcomes.
The threshold can either be fixed or variable, and the scaling parameter can
either be linear or sigmoid. Thus, there can be 8 types of the RLDDM. Using
the Watanabe-Akaike Information Criterion 12, they found that the full RLDDM
i.e. with dual learning rates, one for positive and one for negative outcomes,
with sigmoid scaling parameters and with variable bounds explain the date the
best (Figure 10).

Pedersen et al., (2017) [PFB17] used the RLDDM to gain a different per-
spective on ADHD patients and the effects of medication. They found that
medication increased boundary separation, lowered learning rates, increased
non-decision time, and increased the drift rate scaling, showing the shift to-
wards focusing on accuracy rather than speed. Thus, the RLDDM has the
potential to be used in many clinical experiments.

6 Discussion

Recently, researchers have tried applying the Drift Diffusion Model, a popular
computational model for sensory decision-making, to more cognitive and com-
plex tasks. These studies have shown that the DDM can explain a variety of psy-

12Watanabe Akaike Information Criterion - Another model criterion like BIC and DIC. It
penalizes the model in a way, similar to that of DIC but it takes the summation of the variance
of each posterior draw. It is more computationally taxing than both BIC and DIC but gives
a better approximation of how good the model is.
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Figure 10: Lower the WAIC score, better the model. The dual learning
rate means that positive and negative outcomes will have a different
effect on the decision-maker. The threshold is variable, thus when
the decision is the easiest the threshold is the lowest. The scaling
parameter can be fixed or s-shaped.

chological phenomena and real-life decisions. The model captures the response
times and the behaviour of the participants in these tasks and helps in giving
a greater insight into the underlying processes of deliberation and decision-
making. Further research into the DDM could have powerful applications in
consumer behaviour, traffic behaviour and laws, computer-driven vehicles and
could have important clinical and social applications. Though the tasks looked
at in this review are more complex than sensory and simple value-based choice,
they are still a step away from explaining important and life-changing decisions.
The model comparison criteria used in this review (BIC, DIC, WAIC) may rep-
resent a caveat in the literature. These criteria penalize the models in different
manners and lack of uniformity in the literature could result in the selection of
incorrect models (Churchland and Kiani, 2016 [CK16]) . Future research should
aim to refine the DDM framework and attempt to resolve the debates about the
dynamics of the drift-diffusion process. Future work should also aim to conduct
more extensive research in finding definitive neural correlates and circuits for
the parameters. New techniques such as calcium imaging and optogenetics, if
adapted to work in primates, hold interesting possibilities. Another interesting
innovation in the literature is the quantum drift-diffusion model (Rosendahl et
al., 2020 [RBC20]), which looks at evidence as a quantum particle of information
and the threshold as a square attractor. This may open new and fascinating
avenues for improving computational models as a whole. In the last 10 years,
the extensions of the Drift Diffusion Model have led to tremendous progress in
understanding how cognitive decisions are made. The DDM has the potential
to model more complex decisions and holds a lot of promise for the future.
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