Innovative Approaches to Detecting Neurodevelopmental Disorders
Keywords:
STEM, NeurodegenerativeAbstract
Neurodevelopmental disorders encompass a diverse set of conditions marked by disturbances in brain function and development. These disorders, such as Attention-Deficit/Hyperactivity Disorder, Autism Spectrum Disorder, and Intellectual Disabilities, become apparent early in childhood and significantly impact daily functioning and well-being. As the prevalence of these conditions continues to rise, there is an urgent need for effective early detection methods. Innovations in biomarkers, machine learning, and neuroimaging techniques, such as functional magnetic resonance imaging, electroencephalography, and magnetic resonance imaging, provide essential information about the underlying biological mechanisms associated with these disorders. This review provides a comprehensive overview of neurodevelopmental disorders and their impact on specific cognitive brain regions. It explores emerging detection methods, including biomarkers, machine learning, and advanced neuroimaging, and their clinical applications in assessing and diagnosing these conditions. The utilization of genetic markers, specific biochemical indicators, and sophisticated algorithms holds great promise in enhancing diagnostic accuracy and personalizing treatment strategies. Early detection is paramount for improving intervention outcomes and tailoring treatment approaches, promising a more comprehensive understanding and improved outcomes for individuals with neurodevelopmental disorders in the future.
References or Bibliography
van Loo, K. M., & Martens, G. J. (2007). Genetic and environmental factors in complex neurodevelopmental disorders. Current genomics, 8(7), 429–444. https://doi.org/10.2174/138920207783591717
https://www.epa.gov/americaschildrenenvironment/health-neurodevelopmental-disorders
Reichard J and Zimmer-Bensch G (2021) The Epigenome in Neurodevelopmental Disorders. Front. Neurosci. 15:776809. doi: 10.3389/fnins.2021.776809
Mayeux R. (2004). Biomarkers: potential uses and limitations. NeuroRx : the journal of the American Society for Experimental NeuroTherapeutics, 1(2), 182–188. https://doi.org/10.1602/neurorx.1.2.182
Song, C., Jiang, Z. Q., Liu, D., & Wu, L. L. (2022). Application and research progress of machine learning in the diagnosis and treatment of neurodevelopmental disorders in children. Frontiers in psychiatry, 13, 960672. https://doi.org/10.3389/fpsyt.2022.960672
Baker, S., Kandasamy, Y. Machine learning for understanding and predicting neurodevelopmental outcomes in premature infants: a systematic review. Pediatr Res 93, 293–299 (2023). https://doi.org/10.1038/s41390-022-02120-w
Dennis, E. L., & Thompson, P. M. (2013). Typical and atypical brain development: a review of neuroimaging studies. Dialogues in clinical neuroscience, 15(3), 359–384. https://doi.org/10.31887/DCNS.2013.15.3/edennis
Milovanovic, M., & Grujicic, R. (2021). Electroencephalography in Assessment of Autism Spectrum Disorders: A Review. Frontiers in psychiatry, 12, 686021. https://doi.org/10.3389/fpsyt.2021.686021
https://www.medicalnewstoday.com/articles/adhd-brain-vs-normal-brain
Bacon, E. C., Moore, A., Lee, Q., Carter Barnes, C., Courchesne, E., & Pierce, K. (2020). Identifying prognostic markers in autism spectrum disorder using eye tracking. Autism : the international journal of research and practice, 24(3), 658–669. https://doi.org/10.1177/1362361319878578
Cortese, S., Solmi, M., Michelini, G., Bellato, A., Blanner, C., Canozzi, A., Eudave, L., Farhat, L. C., Højlund, M., Köhler-Forsberg, O., Leffa, D. T., Rohde, C., de Pablo, G. S., Vita, G., Wesselhoeft, R., Martin, J., Baumeister, S., Bozhilova, N. S., Carlisi, C. O., Leno, V. C., … Correll, C. U. (2023). Candidate diagnostic biomarkers for neurodevelopmental disorders in children and adolescents: a systematic review. World psychiatry : official journal of the World Psychiatric Association (WPA), 22(1), 129–149. https://doi.org/10.1002/wps.21037
https://cfah.org/adhd-statistics/
Mahone, E. M., & Denckla, M. B. (2017). Attention-Deficit/Hyperactivity Disorder: A Historical Neuropsychological Perspective. Journal of the International Neuropsychological Society : JINS, 23(9-10), 916–929. https://doi.org/10.1017/S1355617717000807
https://www.medicalnewstoday.com/articles/317815#types-of-adhd
https://www.psychiatry.org/patients-families/adhd/what-is-adhd
https://www.clinical-partners.co.uk/child-adolescents/child-teen-adhd/adhd-in-children
Gehricke, J. G., Kruggel, F., Thampipop, T., Alejo, S. D., Tatos, E., Fallon, J., & Muftuler, L. T. (2017). The brain anatomy of attention-deficit/hyperactivity disorder in young adults - a magnetic resonance imaging study. PloS one, 12(4), e0175433. https://doi.org/10.1371/journal.pone.0175433
Plessen, K. J., Bansal, R., Zhu, H., Whiteman, R., Amat, J., Quackenbush, G. A., Martin, L., Durkin, K., Blair, C., Royal, J., Hugdahl, K., & Peterson, B. S. (2006). Hippocampus and amygdala morphology in attention-deficit/hyperactivity disorder. Archives of general psychiatry, 63(7), 795–807. https://doi.org/10.1001/archpsyc.63.7.795
Lanciego, J. L., Luquin, N., & Obeso, J. A. (2012). Functional neuroanatomy of the basal ganglia. Cold Spring Harbor perspectives in medicine, 2(12), a009621. https://doi.org/10.1101/cshperspect.a009621
Shvarzman, R., Crocetti, D., Rosch, K. S., Li, X., & Mostofsky, S. H. (2022). Reduced basal ganglia tissue-iron concentration in school-age children with attention-deficit/hyperactivity disorder is localized to limbic circuitry. Experimental brain research, 240(12), 3271–3288. https://doi.org/10.1007/s00221-022-06484-7
Hodges, H., Fealko, C., & Soares, N. (2020). Autism spectrum disorder: definition, epidemiology, causes, and clinical evaluation. Translational pediatrics, 9(Suppl 1), S55–S65. https://doi.org/10.21037/tp.2019.09.09
https://www.iidc.indiana.edu/irca/articles/making-and-keeping-friends.html
https://www.nimh.nih.gov/health/topics/autism-spectrum-disorders-asd
Kolk, S.M., Rakic, P. (2022). Development of prefrontal cortex. Neuropsychopharmacol. 47, 41–57. https://doi.org/10.1038/s41386-021-01137-9
Goldstein, R., Volkow, N. (2011). Dysfunction of the prefrontal cortex in addiction: neuroimaging findings and clinical implications. Nat Rev Neurosci 12, 652–669. https://doi.org/10.1038/nrn3119
Christian, I. R., et. al. Michael T. Liuzzi, Qiongru Yu, Maria Kryza-Lacombe, Christopher S. Monk, Johanna Jarcho, Jillian Lee Wiggins, (2022). Context-dependent amygdala-prefrontal connectivity in youths with autism spectrum disorder, Research in Autism Spectrum Disorders. 91, 101913, https://doi.org/10.1016/j.rasd.2021.101913.
Igelström, K. M., Webb, T. W., & Graziano, M. S. A. (2017). Functional Connectivity Between the Temporoparietal Cortex and Cerebellum in Autism Spectrum Disorder. Cerebral cortex (New York, N.Y. : 1991), 27(4), 2617–2627. https://doi.org/10.1093/cercor/bhw079
https://www.nichd.nih.gov/health/topics/idds/conditioninfo
Boat, T. F., Wu, J. T., Disorders, C. to E. the S. S. I. D. P. for C. with M., Populations, B. on the H. of S., Board on Children, Y., Medicine, I. of, Education, D. of B. and S. S. and, & The National Academies of Sciences, E. (2015). Clinical characteristics of intellectual disabilities. National Academies Press (US). https://www.ncbi.nlm.nih.gov/books/NBK332877/
https://www.aafp.org/pubs/afp/issues/2018/0515/p649.html
Lee, K., Cascella, M., & Marwaha, R. (2023). Intellectual disability. In StatPearls. StatPearls Publishing. http://www.ncbi.nlm.nih.gov/books/NBK547654/
https://medlineplus.gov/ency/article/001523.htm
El-Baba, R. M., & Schury, M. P. (2023). Neuroanatomy, Frontal Cortex. In StatPearls. StatPearls Publishing. http://www.ncbi.nlm.nih.gov/books/NBK554483/
https://www.pnas.org/doi/10.1073/pnas.1921314117
Bodaghi, A., Fattahi, N., & Ramazani, A. (2023). Biomarkers: Promising and valuable tools towards diagnosis, prognosis and treatment of Covid-19 and other diseases. Heliyon, 9(2), e13323. https://doi.org/10.1016/j.heliyon.2023.e13323
Michelini, G., Norman, L. J., Shaw, P., & Loo, S. K. (2022). Treatment biomarkers for ADHD: Taking stock and moving forward. Translational Psychiatry, 12(1), 1–30. https://doi.org/10.1038/s41398-022-02207-2
Jensen, A. R., Lane, A. L., Werner, B. A., McLees, S. E., Fletcher, T. S., & Frye, R. E. (2022). Modern Biomarkers for Autism Spectrum Disorder: Future Directions. Molecular Diagnosis & Therapy, 26(5), 483–495. https://doi.org/10.1007/s40291-022-00600-7
Song, C., Jiang, Z.-Q., Liu, D., & Wu, L.-L. (2022). Application and research progress of machine learning in the diagnosis and treatment of neurodevelopmental disorders in children. Frontiers in Psychiatry, 13. https://www.frontiersin.org/articles/10.3389/fpsyt.2022.960672
Ghaffar Nia, N., Kaplanoglu, E., & Nasab, A. (2023). Evaluation of artificial intelligence techniques in disease diagnosis and prediction. Discover Artificial Intelligence, 3(1), 5. https://doi.org/10.1007/s44163-023-00049-5
https://healthitanalytics.com/news/ml-tools-facilitate-early-detection-of-autism-spectrum-disorder
Deng, X., Zhang, J., Liu, R., & Liu, K. (2022). Classifying ASD based on time-series fMRI using spatial–temporal transformer. Computers in Biology and Medicine, 151, 106320. https://doi.org/10.1016/j.compbiomed.2022.106320
https://psychcentral.com/lib/what-is-functional-magnetic-resonance-imaging-fmri
Miranda, L., Paul, R., Pütz, B., Koutsouleris, N., & Müller-Myhsok, B. (2021). Systematic Review of Functional MRI Applications for Psychiatric Disease Subtyping. Frontiers in Psychiatry, 12. https://www.frontiersin.org/articles/10.3389/fpsyt.2021.665536
Paloyelis, Y., Mehta, M. A., Kuntsi, J., & Asherson, P. (2007). Functional MRI in ADHD: a systematic literature review. Expert review of neurotherapeutics, 7(10), 1337–1356. https://doi.org/10.1586/14737175.7.10.1337
https://www.healthgrades.com/right-care/electroencephalogram-eeg/10-conditions-diagnosed-with-an-eeg
https://www.neurocareoftx.com/blog/what-conditions-can-an-mri-diagnose
https://www.betterhealth.vic.gov.au/health/conditionsandtreatments/mri-scan
https://directorsblog.nih.gov/2017/02/21/brain-scans-show-early-signs-of-autism-spectrum-disorder/
Mao, Y., He, Y., Liu, L., & Chen, X. (2020). Disease Classification Based on Eye Movement Features With Decision Tree and Random Forest. Frontiers in neuroscience, 14, 798. https://doi.org/10.3389/fnins.2020.00798
https://www.tobii.com/solutions/scientific-research/clinical-research
Merzon, L., Pettersson, K., Aronen, E. T., Huhdanpää, H., Seesjärvi, E., Henriksson, L., MacInnes, W. J., Mannerkoski, M., Macaluso, E., & Salmi, J. (2022). Eye movement behavior in a real-world virtual reality task reveals ADHD in children. Scientific Reports, 12(1), 20308. https://doi.org/10.1038/s41598-022-24552-4
Martel, M. M., Nikolas, M., Jernigan, K., Friderici, K., Waldman, I., & Nigg, J. T. (2011). The dopamine receptor D4 gene (DRD4) moderates family environmental effects on ADHD. Journal of abnormal child psychology, 39(1), 1–10. https://doi.org/10.1007/s10802-010-9439-5
Ptácek, R., Kuzelová, H., & Stefano, G. B. (2011). Dopamine D4 receptor gene DRD4 and its association with psychiatric disorders. Medical science monitor : international medical journal of experimental and clinical research, 17(9), RA215–RA220. https://doi.org/10.12659/msm.881925
Tovo-Rodrigues, L., Rohde, L. A., Menezes, A. M., Polanczyk, G. V., Kieling, C., Genro, J. P., Anselmi, L., & Hutz, M. H. (2013). DRD4 rare variants in Attention-Deficit/Hyperactivity Disorder (ADHD): further evidence from a birth cohort study. PloS one, 8(12), e85164. https://doi.org/10.1371/journal.pone.0085164
Faraone, S. V., Doyle, A. E., Mick, E., & Biederman, J. (2001). Meta-Analysis of the Association Between the 7-Repeat Allele of the Dopamine D4 Receptor Gene and Attention Deficit Hyperactivity Disorder. American Journal of Psychiatry, 158(7), 1052–1057. https://doi.org/10.1176/appi.ajp.158.7.1052
Zhang, L., Chang, S., Li, Z., Zhang, K., Du, Y., Ott, J., & Wang, J. (2012). ADHDgene: a genetic database for attention deficit hyperactivity disorder. Nucleic acids research, 40(Database issue), D1003–D1009. https://doi.org/10.1093/nar/gkr992
Kessi, M., Xiong, J., Wu, L., Yang, L., He, F., Chen, C., Pang, N., Duan, H., Zhang, W., Arafat, A., Yin, F., & Peng, J. (2018). Rare Copy Number Variations and Predictors in Children With Intellectual Disability and Epilepsy. Frontiers in Neurology, 9. https://www.frontiersin.org/articles/10.3389/fneur.2018.00947
Viñas-Jornet, M., Esteba-Castillo, S., Baena, N., Ribas-Vidal, N., Ruiz, A., Torrents-Rodas, D., Gabau, E., Vilella, E., Martorell, L., Armengol, L., Novell, R., & Guitart, M. (2018). High Incidence of Copy Number Variants in Adults with Intellectual Disability and Co-morbid Psychiatric Disorders. Behavior genetics, 48(4), 323–336. https://doi.org/10.1007/s10519-018-9902-6
Rosenbloom, M. J., & Pfefferbaum, A. (2008). Magnetic resonance imaging of the living brain: evidence for brain degeneration among alcoholics and recovery with abstinence. Alcohol research & health : the journal of the National Institute on Alcohol Abuse and Alcoholism, 31(4), 362–376.
Faizo N. L. (2022). A narrative review of MRI changes correlated to signs and symptoms of autism. Medicine, 101(34), e30059. https://doi.org/10.1097/MD.0000000000030059
Hernandez, L., Rudie, J., Green, S. et al. Neural Signatures of Autism Spectrum Disorders: Insights into Brain Network Dynamics. Neuropsychopharmacol 40, 171–189 (2015). https://doi.org/10.1038/npp.2014.172
Stephen, R., Liu, Y., Ngandu, T., Antikainen, R., Hulkkonen, J., Koikkalainen, J., Kemppainen, N., Lötjönen, J., Levälahti, E., Parkkola, R., Pippola, P., Rinne, J., Strandberg, T., Tuomilehto, J., Vanninen, R., Kivipelto, M., Soininen, H., Solomon, A., & for the FINGER study group. (2019). Brain volumes and cortical thickness on MRI in the Finnish Geriatric Intervention Study to Prevent Cognitive Impairment and Disability (FINGER). Alzheimer’s Research & Therapy, 11(1), 53. https://doi.org/10.1186/s13195-019-0506-z
Clayden J. D. (2013). Imaging connectivity: MRI and the structural networks of the brain. Functional neurology, 28(3), 197–203. https://doi.org/10.11138/FNeur/2013.28.3.197
Lv, H., Wang, Z., Tong, E., Williams, L. M., Zaharchuk, G., Zeineh, M., Goldstein-Piekarski, A. N., Ball, T. M., Liao, C., & Wintermark, M. (2018). Resting-State Functional MRI: Everything That Nonexperts Have Always Wanted to Know. AJNR. American journal of neuroradiology, 39(8), 1390–1399. https://doi.org/10.3174/ajnr.A5527
https://psychcentral.com/lib/what-is-functional-magnetic-resonance-imaging-fmri#uses
Aboitiz, F., Ossandón, T., Zamorano, F., Palma, B., & Carrasco, X. (2014). Irrelevant stimulus processing in ADHD: catecholamine dynamics and attentional networks. Frontiers in psychology, 5, 183. https://doi.org/10.3389/fpsyg.2014.00183
Babaeeghazvini, P., Rueda-Delgado, L. M., Gooijers, J., Swinnen, S. P., & Daffertshofer, A. (2021). Brain Structural and Functional Connectivity: A Review of Combined Works of Diffusion Magnetic Resonance Imaging and Electro-Encephalography. Frontiers in Human Neuroscience, 15. https://www.frontiersin.org/articles/10.3389/fnhum.2021.721206
Xu, M., Ouyang, Y., & Yuan, Z. (2023). Deep Learning Aided Neuroimaging and Brain Regulation . Sensors, 23(11), 4993. https://doi.org/10.3390/s23114993
Khosla, M., Jamison, K., Ngo, G. H., Kuceyeski, A., & Sabuncu, M. R. (2019). Machine learning in resting-state fMRI analysis. Magnetic resonance imaging, 64, 101–121. https://doi.org/10.1016/j.mri.2019.05.031
Farahani, F. V., Fiok, K., Lahijanian, B., Karwowski, W., & Douglas, P. K. (2022). Explainable AI: A review of applications to neuroimaging data. Frontiers in neuroscience, 16, 906290. https://doi.org/10.3389/fnins.2022.906290
Tomaz Da Silva, L., Esper, N. B., Ruiz, D. D., Meneguzzi, F., & Buchweitz, A. (2021). Visual Explanation for Identification of the Brain Bases for Developmental Dyslexia on fMRI Data. Frontiers in computational neuroscience, 15, 594659. https://doi.org/10.3389/fncom.2021.594659
Liu, M., Li, B., & Hu, D. (2021). Autism Spectrum Disorder Studies Using fMRI Data and Machine Learning: A Review. Frontiers in Neuroscience, 15. https://www.frontiersin.org/articles/10.3389/fnins.2021.697870
Zhang, X., Ma, Z., Zheng, H., Li, T., Chen, K., Wang, X., Liu, C., Xu, L., Wu, X., Lin, D., & Lin, H. (2020). The combination of brain-computer interfaces and artificial intelligence: applications and challenges. Annals of translational medicine, 8(11), 712. https://doi.org/10.21037/atm.2019.11.109
Volkova, K., Lebedev, M. A., Kaplan, A., & Ossadtchi, A. (2019). Decoding Movement From Electrocorticographic Activity: A Review. Frontiers in Neuroinformatics, 13. https://www.frontiersin.org/articles/10.3389/fninf.2019.00074
Song, C., Jiang, Z.-Q., Hu, L.-F., Li, W.-H., Liu, X.-L., Wang, Y.-Y., Jin, W.-Y., & Zhu, Z.-W. (2022). A machine learning-based diagnostic model for children with autism spectrum disorders complicated with intellectual disability. Frontiers in Psychiatry, 13. https://www.frontiersin.org/articles/10.3389/fpsyt.2022.993077
https://psychcentral.com/lib/types-of-brain-imaging-techniques#types
Adamou, M., Fullen, T., & Jones, S. L. (2020). EEG for Diagnosis of Adult ADHD: A Systematic Review With Narrative Analysis. Frontiers in Psychiatry, 11. https://www.frontiersin.org/articles/10.3389/fpsyt.2020.00871
Jeste, S. S., Frohlich, J., & Loo, S. K. (2015). Electrophysiological biomarkers of diagnosis and outcome in neurodevelopmental disorders. Current opinion in neurology, 28(2), 110–116. https://doi.org/10.1097/WCO.0000000000000181
Roohi-Azizi, M., Azimi, L., Heysieattalab, S., & Aamidfar, M. (2017). Changes of the brain's bioelectrical activity in cognition, consciousness, and some mental disorders. Medical journal of the Islamic Republic of Iran, 31, 53. https://doi.org/10.14196/mjiri.31.53
Chiarion, G., Sparacino, L., Antonacci, Y., Faes, L., & Mesin, L. (2023). Connectivity Analysis in EEG Data: A Tutorial Review of the State of the Art and Emerging Trends. Bioengineering (Basel, Switzerland), 10(3), 372. https://doi.org/10.3390/bioengineering10030372
Lau-Zhu, A., Lau, M. P. H., & McLoughlin, G. (2019). Mobile EEG in research on neurodevelopmental disorders: Opportunities and challenges. Developmental cognitive neuroscience, 36, 100635. https://doi.org/10.1016/j.dcn.2019.100635
Pfeiffer, U. J., Vogeley, K., & Schilbach, L. (2013). From gaze cueing to dual eye-tracking: Novel approaches to investigate the neural correlates of gaze in social interaction. Neuroscience & Biobehavioral Reviews, 37(10, Part 2), 2516–2528. https://doi.org/10.1016/j.neubiorev.2013.07.017
de Belen, R. A., Pincham, H., Hodge, A., Silove, N., Sowmya, A., Bednarz, T., & Eapen, V. (2023). Eye-tracking correlates of response to joint attention in preschool children with autism spectrum disorder. BMC psychiatry, 23(1), 211. https://doi.org/10.1186/s12888-023-04585-3
Frick, M. A., Brocki, K. C., Henriksson, L. H., & Kleberg, J. L. (2023). Disrupted Attention to Other's Eyes is Linked to Symptoms of ADHD in Childhood. Child psychiatry and human development, 54(4), 973–984. https://doi.org/10.1007/s10578-022-01316-9
Doruk Camsari, D., Kirkovski, M., & Croarkin, P. E. (2018). Therapeutic Applications of Noninvasive Neuromodulation in Children and Adolescents. The Psychiatric clinics of North America, 41(3), 465–477. https://doi.org/10.1016/j.psc.2018.05.003
Downloads
Posted
Categories
License
Copyright (c) 2023 Jiya Jagani
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
The copyright holder(s) for this article has granted JSR.org a license to display the article in perpetuity.