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Abstract

Machine learning is a field of computer science that allows data scientists to use statistical
methods and functions from a coding language to analyze data and make insightful conclusions
[1.4, 3. 2]. The problem we consider in this paper 1s that of supervised learning. We will use
logistic regression to create a computational model that can make predictions and later help us
make decisions. We will discuss the process and the factors to consider while coming up with the
model.

Introduction

As diabetes cases are rising and becoming a widespread problem. it 1s important to be able to
diagnose diabetes. By using machine learning, we can compute a model that can predict what
specific numbers for each vanable (ex: age, blood pressure, insulin) are likely to cause diabetes.
This way the person can make certain lifestvle changes to prevent getting diabetes. While the
model won't always be accurate in predicting whether a person with certain statistics will get
diabetes, it will be mostly accurate and better than not knowing at all whether a person will get
diabetes later on 1n their life.

Az mentioned earlier, the type of problem we are dealing with 1z supervised learning. This means
the data consists of many examples that each have features and a label. The features can be
considered the independent variables and the label can be considered the dependent variable. In a
diabetes data set taken from Kaggle, the examples are female patients. The features are the
number of pregnancies, glucose, blood pressure, skin thickness, insulin, BMI, diabetes pedigree
function, and age. The label 15 basically the conclusion: does the patient have diabetes or not. 0
indicates that the patient does not have diabetes while 1 indicates that the patient does have
diabetes. Because there are two different outcomes for the label (0 and 1), this problem 1s known
as a binary classification problem. The table below represents the data set. Five out of 392
patients” statistics are shown.

Pregnancies | Glucose |BP | SkinThickness | Insulin | BMI | Diabetes | Age | Outcome
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1 89 66 |23 o4 28.1 | 0.167 21 0
0 137 40 |33 168 431 | 2288 33 1
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88 31.0 | 0.248 26 1




2 197 70 |45 543 305 | 0.158 53 1
1 189 60 |23 846 30.1 | 0398 59 1
Table 1

Initially the data was a set of 768 examples. However, there were too many (s in the data for
almost every feature. Since 0 1s not a realistic number for each category, we removed 1t from the
data. This cut down the data to 392 examples.

Afterward, we checked to make sure that the data zet waz well balanced with Oz and 1z If the
outcome 1s mostly 1 or 0, the data set needs to be amended so that the model can be as accurate
as possible. There ended up being 262 0s and 130 1s which 1s pretty good.

Setting Up to Create the Model

Once the data set itself was ready (has realistic numbers and 1s well balanced), the next step was
to store the outcomes mnto a 1D array called v using the numpy library. Since there are 392
examples, 392 values are stored in the v array where v = [y, vo. ¥a. ... . Vaoz]. ¥ 18 the ith label.
We will store the features 1n X However, since there are multiple features for each example, X
must be of type 2D numpy array, which 1s why we have saved 1t as capital X. X = [ [x1 1. %12, %15,
s X0 [K.'::l.- By Hose oo K;.C]: —--x [X3e21. Fioz2: Xapi: - Ks-;:;;]-

WNext, the features and labels must be split into a training and validation set. The training set will
be used to develop the model while the validation set will be used to test the accuracy of the
model. Since the validation set was not used to develop the model, it 1s a good test to see whether
the model 1s accurate for examples other than the one 1t was trained for. 23% of the examples
will be randomly chosen for the validation set.

The features must also be scaled which means they become numbers not too small or large and
not too spread out or clumped. This makes the data easier to work with.

Binary Cross Entropy Error

e

The model will make predictions based on the features given. y_ will be the prediction from our
model while v, will be the actual label given in the dataset. v; will be etther 0 or 1 to indicate
whether the person has diabetes or no while y_will be between 0 and 1 to detect the probability

of the person having diabetes. If the decimal is closer to 0, the person does not have diabetes, and
if the decimal 1s closer to 1, the person does have diabetes.
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— (v log(y) + (1 — ¥)log(1 — y)) 1s the binary cross entropy error for a specific example



with features x;; from the one dimensional numpy array x; and the label y;. If the features from x;
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are plugged into the model, we will get v and the error of the model’s prediction 1s given by the

expression above. The smaller the error 13, the closer the estimation 1s to the actual label in the
dataset. If they are exactly equal, the error 1s 0.

However, the expression above only gives the error for one example. In order to find the error

overall, — %E (v log(v) + (1 — y)log(1l — v)) is used. It gives the average of all the
i i=1 3 L 1 1
binary cross entropy errors of all the examples.

Logistic Regression

There are a few different methods that can be used for supervised learning problems. Some are
logistic regression and neural networks. Neural networks 15 not used here because the data set
doesn’t have that many examples, so using neural networks won't make our model be more
accurate. Logistic regression will give similar results and 1s exclusively for binary classification
problems which 1z what we are dealing with here. The function for this is
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o(x) = 1/(1 + e ). When using logistic regression our mnput 1s
wx +w x_ +..+ wx + bandthe model o(x) gives y . wy. Wy ..., Wy, and b are the
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parameters which are adjusted so that the model gives the smallest possible binary cross entropy
error. After our model 1s created. we use the command “model predict(X train_scaled)” to get
the predicted labels from the training scaled set of features. “model predict(X_ val scaled)” 1s
used to get the predicted labels from the validation scaled set (which was not used to create the
model). Next the predicted labels from the training and validation sets are changed to 0s and 1s
based on which number the decimal value is closest to. Then the classification report 1s printed
for both the training and validation sets to see the precision and recall of the model. The
precision measures how many of the “yes™ predictions were actually true. The recall measures
how many of the veses in the actual data set were predicted correctly by the model. Did the
model catch most of the patients with diabetes? The recall 1s the better measure of the model’s
reliability since even if precision 1s high, it just means that whatever yeses the model predicted,
were right. It doesn’t mean that the model was able to get most of the yeses 1n the actual dataset.
The recall for the s was 86% while the recall for the 1s was 56%. That means the average recall
was 71%, meaning the model 1s mediocre. It does a good job getting most of the people who do
not have diabetes, but an okay job predicting the people who do have diabetes. However, the
model we predict cannot really get any better than this. This 1s what we have_ and 1t 1s not that
bad 1n making true predictions.
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