Potential Multiple Myeloma Therapeutic Strategies through Targeting Macrophages and Mesenchymal Stromal Cells
DOI:
https://doi.org/10.47611/jsr.v12i1.1870Keywords:
Multiple Myeloma, Tumor-associated Macrophages, Mesenchymal Stromal Cells, Bone Marrow, Clodronate LiposomesAbstract
Multiple Myeloma (MM), a bone marrow plasma cell hematopoietic cancer, remains a critical but incurable hematological malignancy, prone to deadly relapses even after existing treatment. In this review, I describe the origins of pro-tumor myeloma-associated macrophages. I specifically outline how classically activated anti-tumor macrophages that home to the cancerous bone marrow tumor microenvironment is polarized into pro-tumor macrophages. We then explain how these myeloma-associated macrophages play an important role in supporting multiple myeloma by enabling drug resistance, improved growth, angiogenesis, and protection. We also describe several treatments in development aimed to sever the supportive link between myeloma-associated macrophages and MM by blocking signaling pathways, destroying, or repolarizing macrophages and even preventing macrophage polarization in the first place. We conclude that careful study is needed to improve the reliability of targeting myeloma-associated macrophages to reduce MM relapse and comprehensively treat this cancer.
Downloads
Metrics
References or Bibliography
Siegel, R.L., Miller, K.D. and Jemal, A. (2016), Cancer statistics, 2016. CA: A Cancer Journal for Clinicians, 66: 7-30. https://doi.org/10.3322/caac.21332
Bristol Myers Squibb. (2020). Blood Cancers. [pdf]. https://www.bms.com/assets/bms/us/en us/pdf/Disease-State-Info/blood-cancers-at-a-glance.pdf
American Society of Clinical Oncology. (Feb 2022). Multiple Myeloma: Statistics. Cancer.Net.
https://www.cancer.net/cancer-types/multiple-myeloma/statistics
Majithia, N., Rajkumar, S., Lacy, M. et al. Early relapse following initial therapy for multiple myeloma predicts poor outcomes in the era of novel agents. Leukemia 30, 2208–2213 (2016). https://doi.org/10.1038/leu.2016.147
Opperman, K.S., Vandyke, K., Psaltis, P.J. et al. Macrophages in multiple myeloma: key roles
and therapeutic strategies. Cancer Metastasis Rev 40, 273–284 (2021).
https://doi.org/10.1007/s10555-020-09943-1
Mosser, D., Edwards, J. Exploring the full spectrum of macrophage activation. Nat Rev
Immunol 8, 958–969 (2008). https://doi.org/10.1038/nri2448
Werner, S. & Grose, R. (2003). Regulation of Wound Healing by Growth Factors and
Cytokines. Physiological Reviews 83: 835-870. https://doi.org/10.1152/physrev.2003.83.3.835
Roberts, D. B., Sporn, M. B., Assoian, R. K. et al. Transforming growth factor type beta: rapid
induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro.
Proceedings of the National Academy of Sciences 82 (12).
https://doi.org/10.1073/pnas.83.12.4167
Vacca, A., Ribatti, D., Presta, M., Minischetti, M., Lurlaro, M., Ria, R., Albini, A., Bussolino, F.,
Dammacco, F.; Bone Marrow Neovascularization, Plasma Cell Angiogenic Potential, and Matrix
Metalloproteinase-2 Secretion Parallel Progression of Human Multiple Myeloma. Blood 1999;
(9): 3064–3073. doi: https://doi.org/10.1182/blood.V93.9.3064
Berardi, S., Ria, R., Reale, A., De Luisi, A., Catacchio, I., Moschetta, M., Vacca, A. "Multiple
Myeloma Macrophages: Pivotal Players in the Tumor Microenvironment", Journal of Oncology,
vol. 2013, Article ID 183602, 6 pages, 2013. https://doi.org/10.1155/2013/183602
Chen P, Cescon M, Bonaldo P. Autophagy-mediated regulation of macrophages and its
applications for cancer. Autophagy. 2014 Feb;10(2):192-200.
https://www.tandfonline.com/doi/full/10.4161/auto.26927
Martinez F. O. & Gordon S. (2014). The M1 and M2 paradigm of macrophage activation:
time for reassessment. Faculty Opinions. https://facultyopinions.com/prime/reports/b/6/13/
De Beule, N., De Veirman, K., Maes, K., De Bruyne, E., Menu, E., Breckpot, K., De Raeve, H.,
Van Rampelbergh, R., Van Ginderachter, J.A., Schots, R., Van Valckenborgh, E. and
Vanderkerken, K. (2017), Tumour-associated macrophage-mediated survival of myeloma cells
through STAT3 activation. J. Pathol, 241: 534-546. https://doi.org/10.1002/path.4860
Liposoma. (n.d.). Product Description. https://clodronateliposomes.com/about-clodronate
liposomes
Opperman, K., Vandyke, K., Clark, K., Coulter, E., Hewett, D., Mrozik, K., Schwarz, N.,
Evdokiou, A., Croucher, P., Psaltis, P., Noll, J., Zannettino, A. Clodronate-Liposome Mediated
Macrophage Depletion Abrogates Multiple Myeloma Tumor Establishment In Vivo, Neoplasia,
Volume 21, Issue 8, 2019, Pages 777-787, ISSN 1476-5586,
https://doi.org/10.1016/j.neo.2019.05.006
Li Y., Zheng Y., Li T., Wang Q., Qian J., Lu Y., Zhang M., Bi E., Yang M., Reu F., Yi Q., Cai Z.
Chemokines CCL2, 3, 14 stimulate macrophage bone marrow homing, proliferation, and
polarization in multiple myeloma. Oncotarget. 2015; 6: 24218-24229.
https://www.oncotarget.com/article/4523/text/
Beider K, Bitner H, Leiba M, Gutwein O, Koren-Michowitz M, Ostrovsky O, Abraham M, Wald
H, Galun E, Peled A, Nagler A. Multiple myeloma cells recruit tumor-supportive macrophages
through the CXCR4/CXCL12 axis and promote their polarization toward the M2 phenotype.
Oncotarget. 2014 Nov 30;5(22):11283-96. doi: 10.18632/oncotarget.2207
Chen, J., He, D., Chen, Q. et al. BAFF is involved in macrophage-induced bortezomib
resistance in myeloma. Cell Death Dis 8, e3161 (2017). https://doi.org/10.1038/cddis.2017.533
Zheng, Y., Yang, J., Qian, J. et al. PSGL-1/selectin and ICAM-1/CD18 interactions are involved
in macrophage-induced drug resistance in myeloma. Leukemia 27, 702–710 (2013).
https://doi.org/10.1038/leu.2012.272
Catlett-Falcone, Robyn et al. Immunity, Volume 10, Issue 1, 105 – 115
https://doi.org/10.1016/S1074-7613(00)80011-4
Papadimitriou K, Tsakirakis N, Malandrakis P, Vitsos P, Mitousis A, Orologas-Stavrou N,
Ntanasis-Stathopoulos I, Kanellias N, Eleftherakis-Papaiakovou E, Pothos P, Fotiou D,
Gavriatopoulou M, Kastritis E, Dimopoulos M-A, Terpos E, Tsitsikronis OE, Kostopoulos IV. Deep
Phenotyping Reveals Distinct Immune Signatures Correlating with Prognostication, Treatment
Responses, and MRD Status in Multiple Myeloma. Cancers. 2020; 12(11):3245.
https://doi.org/10.3390/cancers12113245
Andersen, M. N., Abildgaard, N., Maniecki, M. B., Moller, H. J., & Andersen, N. F. (2014).
Monocyte/macrophage-derived soluble CD163: A novel biomarker in multiple myeloma.
European Journal of Haematology, 93(1), 41–47. https://doi.org/10.1111/ejh.12296
Scavelli, C., Nico, B., Cirulli, T. et al. Vasculogenic mimicry by bone marrow macrophages in
patients with multiple myeloma. Oncogene 27, 663–674 (2008).
https://doi.org/10.1038/sj.onc.1210691
Kim, J., Denu, R.A., Dollar, B.A., Escalante, L.E., Kuether, J.P., Callander, N.S., Asimakopoulos,
F. and Hematti, P. (2012), Macrophages and mesenchymal stromal cells support survival and
proliferation of multiple myeloma cells. Br J Haematol, 158: 336-346.
https://doi.org/10.1111/j.1365-2141.2012.09154.x
Calcinotto, A., Ponzoni, M., Ria, R., Grioni, M., Cattaneo, E., Villa, I., Bertilaccio, M., Chesi, M.,
Rubinacci, A., Tonon, G., Bergsagel, P., Vacca, A. & Bellone, M. (2015) Modifications of the
mouse bone marrow microenvironment favor angiogenesis and correlate with disease
progression from asymptomatic to symptomatic multiple myeloma, OncoImmunology, 4:6.
https://doi.org/10.1080/2162402X.2015.1008850
Alexandrakis, M.G., Goulidaki, N., Pappa, C.A. et al. Interleukin-10 Induces Both Plasma Cell
Proliferation and Angiogenesis in Multiple Myeloma. Pathol. Oncol. Res. 21, 929–934 (2015).
https://doi.org/10.1007/s12253-015-9921-z
Sun, M., Qiu, S., Xiao, Q. et al. Synergistic effects of multiple myeloma cells and tumor
associated macrophages on vascular endothelial cells in vitro. Med Oncol 37, 99 (2020).
https://doi.org/10.007/s12253-015-9921-z
Richer M.J., Nolz J.C., Harty J.T. Pathogen-specific inflammatory milieux tune the antigen
sensitivity of CD8(+) T cells by enhancing T cell receptor signaling. Immunity. 2013; 38: 140
https://doi.org/10.1016/j.immuni.2012.09.017
Kim, D., Wang, J., Willingham, S. et al. Anti-CD47 antibodies promote phagocytosis and
inhibit the growth of human myeloma cells. Leukemia 26, 2538–2545 (2012).
https://doi.org/10.1038/leu.2012.141
Anton K, Banerjee D, Glod J (2012) Macrophage-Associated Mesenchymal Stem Cells
Assume an Activated, Migratory, Pro-Inflammatory Phenotype with Increased IL-6 and CXCL10
Secretion. PLoS ONE 7(4): e35036. https://doi.org/10.1371/journal.pone.0035036
Chen, H., Li, M., Wang, C., Sanchez, E., Soof, C., Udd, K., Director, C., Cao, J., Tang, G., &
Berenson, J. (2017). Increase in M2 macrophage polarization in multiple myeloma bone
marrow is inhibited with the JAK2 inhibitor ruxolitinib which shows anti-MM effects. Clinical Lymphoma, Myeloma & Leukemia, 17(1), e93. https://doi.org/10.1016/j.clml.2017.03.166.
Cannarile MA, Weisser M, Jacob W, et al Colony-stimulating factor 1 receptor (CSF1R)
inhibitors in cancer therapy Journal for ImmunoTherapy of Cancer 2017;5:53. doi:
1186/s40425-017-0257-y. https://doi.org/10.1186/s40425-017-0257-y
Wang, Q., Lu, Y., Li, R. et al. Therapeutic effects of CSF1R-blocking antibodies in multiple
myeloma. Leukemia 32, 176–183 (2018). https://doi.org/10.1038/leu.2017.193
Alexander M. Lesokhin, Susan Bal, Ashraf Z. Badros; Lessons Learned from Checkpoint
Blockade Targeting PD-1 in Multiple Myeloma. Cancer Immunol Res 1 August 2019; 7 (8):
–1229. https://doi.org/10.1158/2326-6066.CIR-19-0148
Advani, R., Flinn, I., Popplewell, L., Forero, A., Bartlett, N. L., Ghosh, N., Kline, J., Roschewski,
M., LaCasce, A., Collins, G. P., Tran, T., Lynn, J., Chen, J. Y., Volkmer, J. P., Agoram, B., Huang, J.,
Majeti, R., Weissman, I. L., Takimoto, C. H., Chao, M. P., & Smith, S. M. (2018). CD47 blockade by
Hu5F9-G4 and rituximab in non-Hodgkin’s lymphoma. The New England Journal of Medicine,
(18), 1711–1721. https://doi.org/10.1056/NEJMoa1807315
. Linderoth, E., Helke, S., Lee, V., Mutukura, T., Wong, M., Lin, G., Johnson, L., Pang, X., Winston, J., Petrova, P., Uger, R., Viller, N.; Abstract 2653: The anti-myeloma activity of TTI-621 (SIRPaFc), a CD47-blocking immunotherapeutic, is enhance when combined with a proteasome inhibitor. Cancer Res 1 July 2017; 77 (13_Supplement): 2653. https://doi.org/10.1158/1538-7445.AM2017-2653
Wilson, W., Richards, J., Puro, R., Andrejeva, G., Capoccia, B., Donio, M., Hiebsch, R., Chakraborty, P., Sung, V., Pereira, S.; AO-176, a Highly Differentiated Clinical Stage Anti-CD47 Antibody, Exerts Potent Anti-Tumor Activity in Preclinical Models of Multiple Myeloma As a Single Agent and in Combination with Approved Therapeutics. Blood 2020; 136 (Supplement 1): 3–4. doi: https://doi.org/10.1182/blood-2020-139655
Rastgoo, N., Wu, J., Liu, A., Pourabdollah, M., Atenafu, E., Reece, D., Chen, W., Chang, H. Targeting CD47/TNFAIP8 by miR-155 overcomes drug resistance and inhibits tumor growth through induction of phagocytosis and apoptosis in multiple myeloma. Haematologica 2019;105(12):2813-2823; https://doi.org/10.3324/haematol.2019.227579
Chen, H., Li, M., Sanchez, E., Soof, C.M., Bujarski, S., Ng, N., Cao, J., Hekmati, T., Zahab, B., Nosrati, J.D., Wen, M., Wang, C.S., Tang, G., Xu, N., Spektor, T.M. and Berenson, J.R. (2020), JAK1/2 pathway inhibition suppresses M2 polarization and overcomes resistance of myeloma to lenalidomide by reducing TRIB1, MUC1, CD44, CXCL12, and CXCR4 expression. Br J Haematol, 188: 283-294. https://doi.org/10.1111/bjh.16158
Jensen, J., Rakhmilevich, A., Heninger, E., Broman, A., Hope, C., Phan, F., Miyamoto, S., Maroulakou, I., Callander, N., Hematti, P., Chesi, M., Bergsagel, P., Sondel, P., Asimakopoulos, F.; Tumoricidal Effects of Macrophage-Activating Immunotherapy in a Murine Model of Relapsed/Refractory Multiple Myeloma. Cancer Immunol Res 1 August 2015; 3 (8): 881–890. https://doi.org/10.1158/2326-6066.CIR-15-0025-T
Gutiérrez-González, A., Martínez-Moreno, M., Samaniego, R., Arellano-Sánchez, N., Salinas-Muñoz, L., Relloso, M., Valeri, A., Martínez-López, J., Corbí, A., Hidalgo, A., García-Pardo, A., Teixidó, J., Sánchez-Mateos, P.; Evaluation of the potential therapeutic benefits of macrophage reprogramming in multiple myeloma. Blood 2016; 128 (18): 2241–2252. doi: https://doi.org/10.1182/blood-2016-01-695395
Gantke, T., Sriskantharajah, S & Ley, S. Regulation and function of TPL-2, an IkB kinase-regulated MAP kinase. Cell Res 21, 13-145 (2011). https://doi.org/10.1038/cr.2010.173
Zhang, D., Huang, J., Wang, F. et al. BMI1 regulates multiple myeloma-associated macrophage’s pro-myeloma functions. Cell Death Dis 12, 495 (2021). https://doi.org/10.1038/s41419-021-03748-y
Li X, Yao W, Yuan Y, et al. Targeting of tumor-infiltrating macrophages via CCL2/CCR2 signaling as a therapeutic strategy against hepatocellular carcinoma. Gut 2017;66:157-167. https://gut.bmj.com/content/66/1/157
Smith, L. K., Boukhaled, G.M., Condotta, S.A., Mazouz, S., Guthmiller, J.J., Vijay, R., Butler, N.S., Bruneau, J., Shoukry, N.H., Krawczyk, C.M., Richer, M.J. Interleukin-10 Directly Inhibits CD8+ T Cell Function by Enhancing N-Glycan Branching to Decrease Antigen Sensitivity. Immunity. 2018 Feb 20;48(2):299-312.e5. https://doi.org/10.1016/j.immuni.2018.01.006
Published
How to Cite
Issue
Section
Copyright (c) 2023 William Hu
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.