Using nitrogen and oxygen isotopes to locate pollution from non-point sources in the Chesapeake Bay

Authors

  • Cole Pate James Madison University

DOI:

https://doi.org/10.47611/jsr.v11i3.1711

Keywords:

Non-point source, nitrogen isotope, oxygen isotope, pollution, fertilizer, manure, Chesapeake Bay

Abstract

Locating non-point sources of pollution is essential to keep bodies of water (streams, rivers, lakes, groundwater, etc.) clean and to protect the humans, plants, and animals that depend on this water. However, cleaning up pollution after it has entered waterways is not a sustainable practice. Thus, the pollution must be managed at the source. Non-point sources of pollution have no obvious source which makes them particularly destructive to the environment. One specific location that is greatly affected by pollution is the Chesapeake Bay watershed. Nitrogen and oxygen isotope analysis has been proposed as an effective marker to pinpoint these non-point sources. One of the first challenges is determining the type of pollution (fertilizers, manure, chemical waste, etc.) in a particular waterway. A common form of non-point source pollution that is particularly difficult to locate is fertilizer. Many common types of fertilizer have been studied thoroughly.1,2 Being able to differentiate between types of fertilizers can be the first step to tracing non-point sources back to where they originated. However, there has been no study to create a baseline of isotope abundance in the Chesapeake Bay which is required to locate non-point sources. Additionally, only nitrogen isotopes have been studied in depth within many types of fertilizers. Oxygen isotopes in water and deuterium isotopes can be beneficial to study as well which can further differentiate between types of pollution. Overall, utilizing nitrogen and oxygen isotopic abundance can be the first step to locating harmful sources of pollution in the Chesapeake Bay.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References or Bibliography

(1) Bateman, A. S.; Kelly, S. D. Fertilizer Nitrogen Isotope Signatures. Isotopes Environ. Health Stud. 2007, 43 (3), 237–247. https://doi.org/10.1080/10256010701550732.

(2) Michalski, G.; Kolanowski, M.; Riha, K. M. Oxygen and Nitrogen Isotopic Composition of Nitrate in Commercial Fertilizers, Nitric Acid, and Reagent Salts. Isotopes Environ. Health Stud. 2015, 51 (3), 382–391. https://doi.org/10.1080/10256016.2015.1054821.

(3) Carpenter, S. R.; Caraco, N. F.; Correll, D. L.; Howarth, R. W.; Sharpley, A. N.; Smith, V. H. NONPOINT POLLUTION OF SURFACE WATERS WITH PHOSPHORUS AND NITROGEN. Ecol. Appl. 1998, 8 (3), 559–568. https://doi.org/10.1890/1051-0761(1998)008[0559:NPOSWW]2.0.CO;2.

(4) Nitrogen & Phosphorus https://www.cbf.org/issues/agriculture/nitrogen-phosphorus.html (accessed 2022 -03 -19).

(5) Oun, A.; Kumar, A.; Harrigan, T.; Angelakis, A.; Xagoraraki, I. Effects of Biosolids and Manure Application on Microbial Water Quality in Rural Areas in the US. Water 2014, 6 (12), 3701–3723. https://doi.org/10.3390/w6123701.

(6) Bijay-Singh; Craswell, E. Fertilizers and Nitrate Pollution of Surface and Ground Water: An Increasingly Pervasive Global Problem. SN Appl. Sci. 2021, 3 (4), 518. https://doi.org/10.1007/s42452-021-04521-8.

(7) Fogg, G. E.; Rolston, D. e.; Decker, D. l.; Louie, D. t.; Grismer, M. e. Spatial Variation in Nitrogen Isotope Values Beneath Nitrate Contamination Sources. Groundwater 1998, 36 (3), 418–426. https://doi.org/10.1111/j.1745-6584.1998.tb02812.x.

(8) Harrington, R. R.; Kennedy, B. P.; Chamberlain, C. P.; Blum, J. D.; Folt, C. L. 15N Enrichment in Agricultural Catchments: Field Patterns and Applications to Tracking Atlantic Salmon (Salmo Salar). Chem. Geol. 1998, 147 (3), 281–294. https://doi.org/10.1016/S0009-2541(98)00018-7.

(9) Hu, Q.; Zhu, S.; Jin, Z.; Wu, A.; Chen, X.; Li, F. Using Multiple Isotopes to Identify Sources and Transport of Nitrate in Urban Residential Stormwater Runoff. Environ. Monit. Assess. 2022, 194 (3), 238. https://doi.org/10.1007/s10661-022-09763-6.

(10) Zhang, Y.; Shi, P.; Song, J.; Li, Q. Application of Nitrogen and Oxygen Isotopes for Source and Fate Identification of Nitrate Pollution in Surface Water: A Review. Appl. Sci. 2019, 9 (1), 18. https://doi.org/10.3390/app9010018.

(11) Bateman, A. S.; Kelly, S. D.; Jickells, T. D. Nitrogen Isotope Relationships between Crops and Fertilizer: Implications for Using Nitrogen Isotope Analysis as an Indicator of Agricultural Regime. J. Agric. Food Chem. 2005, 53 (14), 5760–5765. https://doi.org/10.1021/jf050374h.

(12) Kemp, M. W.; Twilley, R. R.; Stevenson, J. C.; Boynton, W. R.; Means, J. C. DECLINE OF SUBMERGED VASCULAR PLANTS IN UPPER CHESAPEAKE BAY: SUMMARY OF RESULTS CONCERNING POSSIBLE CAUSES. Mar. Technol. Soc. J. 1983, 17 (2), 78–89.

(13) Weisberg, S. B.; Ranasinghe, J. A.; Dauer, D. M.; Schaffner, L. C.; Diaz, R. J.; Frithsen, J. B. An Estuarine Benthic Index of Biotic Integrity (B-IBI) for Chesapeake Bay. Estuaries 1997, 20 (1), 149. https://doi.org/10.2307/1352728.

(14) Kemp, W.; Boynton, W.; Adolf, J.; Boesch, D.; Boicourt, W.; Brush, G.; Cornwell, J.; Fisher, T.; Glibert, P.; Hagy, J.; Harding, L.; Houde, E.; Kimmel, D.; Miller, W.; Newell, R.; Roman, M.; Smith, E.; Stevenson, J. Eutrophication of Chesapeake Bay: Historical Trends and Ecological Interactions. Mar. Ecol. Prog. Ser. 2005, 303, 1–29. https://doi.org/10.3354/meps303001.

(15) Goldberg, E. D.; Hodge, V.; Koide, M.; Griffin, J.; Gamble, E.; Bricker, O. P.; Matisoff, G.; Holdren, G. R.; Braun, R. A Pollution History of Chesapeake Bay. Geochim. Cosmochim. Acta 1978, 42 (9), 1413–1425. https://doi.org/10.1016/0016-7037(78)90047-9.

(16) Schindler, D. W. Studies of Eutrophication in Lakes and Their Relevance to the Estuarine Environment. In Estuaries and Nutrients; Neilson, B. J., Cronin, L. E., Eds.; Humana Press: Totowa, NJ, 1981; pp 71–82. https://doi.org/10.1007/978-1-4612-5826-1_4.

(17) Kaufman, Z.; Abler, D.; Shortle, J.; Harper, J.; Hamlett, J.; Feather, P. Agricultural Costs of the Chesapeake Bay Total Maximum Daily Load. Environ. Sci. Technol. 2014, 48 (24), 14131–14138. https://doi.org/10.1021/es502696t.

(18) Kleinman, P.; Blunk, K. S.; Bryant, R.; Saporito, L.; Beegle, D.; Czymmek, K.; Ketterings, Q.; Sims, T.; Shortle, J.; McGrath, J.; Coale, F.; Dubin, M.; Dostie, D.; Maguire, R.; Meinen, R.; Allen, A.; O’Neill, K.; Garber, L.; Davis, M.; Clark, B.; Sellner, K.; Smith, M. Managing Manure for Sustainable Livestock Production in the Chesapeake Bay Watershed. J. Soil Water Conserv. 2012, 67 (2), 54A-61A. https://doi.org/10.2489/jswc.67.2.54A.

(19) Aillery, M. Managing Manure to Improve Air and Water Quality. 65.

(20) Ator, S. Spatially Referenced Models of Streamflow and Nitrogen, Phosphorus, and Suspended-Sediment Loads in Streams of the Northeastern United States; Scientific Investigations Report; Scientific Investigations Report; 2019.

(21) Maps | Chesapeake Bay Program https://www.chesapeakebay.net/what/maps/keyword/population (accessed 2022 -04 -16).

(22) Junk, G.; Svec, H. J. The Absolute Abundance of the Nitrogen Isotopes in the Atmosphere and Compressed Gas from Various Sources. Geochim. Cosmochim. Acta 1958, 14 (3), 234–243. https://doi.org/10.1016/0016-7037(58)90082-6.

(23) Horrigan, S. G.; Montoya, J. P.; Nevins, J. L.; McCarthy, J. J. Natural Isotopic Composition of Dissolved Inorganic Nitrogen in the Chesapeake Bay. Estuar. Coast. Shelf Sci. 1990, 30 (4), 393–410. https://doi.org/10.1016/0272-7714(90)90005-C.

(24) Zhang, Y.; Guo, F.; Meng, W.; Wang, X.-Q. Water Quality Assessment and Source Identification of Daliao River Basin Using Multivariate Statistical Methods. Environ. Monit. Assess. 2009, 152 (1–4), 105–121. https://doi.org/10.1007/s10661-008-0300-z.

(25) Russell, K. M.; Galloway, J. N.; Macko, S. A.; Moody, J. L.; Scudlark, J. R. Sources of Nitrogen in Wet Deposition to the Chesapeake Bay Region. Atmos. Environ. 1998, 32 (14), 2453–2465. https://doi.org/10.1016/S1352-2310(98)00044-2.

(26) Sigleo, A. C.; Macko, S. A. Carbon and Nitrogen Isotopes in Suspended Particles and Colloids, Chesapeake and San Francisco Estuaries, U.S.A. Estuar. Coast. Shelf Sci. 2002, 54 (4), 701–711. https://doi.org/10.1006/ecss.2001.0853.

(27) Li, J.; Bai, Y.; Bear, K.; Joshi, S.; Jaisi, D. Phosphorus Availability and Turnover in the Chesapeake Bay: Insights from Nutrient Stoichiometry and Phosphate Oxygen Isotope Ratios. J. Geophys. Res. Biogeosciences 2017, 122 (4), 811–824. https://doi.org/10.1002/2016JG003589.

(28) Silva, S. R.; Kendall, C.; Wilkison, D. H.; Ziegler, A. C.; Chang, C. C. Y.; Avanzino, R. J. A New Method for Collection of Nitrate from Fresh Water and the Analysis of Nitrogen and Oxygen Isotope Ratios. J. Hydrol. 2000, 228 (1), 22–36. https://doi.org/10.1016/S0022-1694(99)00205-X.

(29) Sigman, D. M.; Casciotti, K. L.; Andreani, M.; Barford, C.; Galanter, M.; Böhlke, J. K. A Bacterial Method for the Nitrogen Isotopic Analysis of Nitrate in Seawater and Freshwater. Anal. Chem. 2001, 73 (17), 4145–4153. https://doi.org/10.1021/ac010088e.

(30) McIlvin, M. R.; Altabet, M. A. Chemical Conversion of Nitrate and Nitrite to Nitrous Oxide for Nitrogen and Oxygen Isotopic Analysis in Freshwater and Seawater. Anal. Chem. 2005, 77 (17), 5589–5595. https://doi.org/10.1021/ac050528s.

(31) Casciotti, K. L.; Sigman, D. M.; Hastings, M. G.; Böhlke, J. K.; Hilkert, A. Measurement of the Oxygen Isotopic Composition of Nitrate in Seawater and Freshwater Using the Denitrifier Method. Anal. Chem. 2002, 74 (19), 4905–4912. https://doi.org/10.1021/ac020113w.

(32) Chen, F.; Jia, G.; Chen, J. Nitrate Sources and Watershed Denitrification Inferred from Nitrate Dual Isotopes in the Beijiang River, South China. Biogeochemistry 2009, 94 (2), 163–174.

(33) Showers, W. J.; Genna, B.; McDade, T.; Bolich, R.; Fountain, J. C. Nitrate Contamination in Groundwater on an Urbanized Dairy Farm. Environ. Sci. Technol. 2008, 42 (13), 4683–4688. https://doi.org/10.1021/es071551t.

Published

03-08-2023

How to Cite

Pate, C. (2023). Using nitrogen and oxygen isotopes to locate pollution from non-point sources in the Chesapeake Bay. Journal of Student Research, 11(3). https://doi.org/10.47611/jsr.v11i3.1711

Issue

Section

Review Articles