Annotation and Homology Modeling of the Multidrug Transport Protein P-Glycoprotein (ABCB1) of Equus Caballus
DOI:
https://doi.org/10.47611/jsr.v11i1.1535Keywords:
BLAST, annotation, homology modeling, P-glycoprotein, QMEAN, SWISS-MODEL, energy minimizationAbstract
The function of ABC transporter proteins, such as ABCB1, is to transport substrates across cell membranes in many organs. ABCB1 can be found in multiple species, however, the sequence we annotated is derived from Equus caballus (horse). The objective of this research was to annotate and derive a structural homology model of the horse-derived P-glycoprotein. We classified the protein as a transmembrane ATP-binding cassette (ABC) protein ABCB1. Annotation of the sequence (which is not yet manually curated in NCBI) was carried out using various tools including BLAST, TMHMM, PFAM, HMM Logo, etc, and supports its designation as ABCB1 or P-glycoprotein of horse. The homology model was constructed using SWISS-MODEL based on the structure of human P-glycoprotein (PDB code: 6c0v). Three structures that share high sequence identity were chosen for analysis. Two homology models were prepared using the cryo-EM structures of human ABCB1 (PDB code: 6qex, % sequence identity) and human P-glycoprotein. The model using the structure of human P-glycoprotein as a template had the highest QMEAN score, Ramachandran favorability, and the most favorable Molprobity score. That model was evaluated using ProCheck and energy minimized using Chiron to give rise to the final model. Energy minimization resolved an unmodeled loop from Q625 to V691 and corrected other minor distortions. The clash ratio of the energy minimized model indicated that there are few clashes in the structure. Based on analysis of the structure validation parameters, the best homology model of equine P-glycoprotein was derived using the human P-glycoprotein as a template.
Downloads
Metrics
References or Bibliography
Alam, A., Kowal, J., Broude, E., Roninson, I., & Locher, K. P. (2019). Structural insight into substrate and inhibitor discrimination by human P-glycoprotein. Science (New York, N.Y.), 363(6428), 753–756. https://doi.org/10.1126/science.aav7102.
Bertoni, M., Kiefer, F., Biasini, M., Bordoli, L., Schwede, T. (2017). Modeling protein quaternary structure of homo- and hetero-oligomers beyond binary interactions by homology. Scientific Reports 7, 10480. https://doi.org/10.1038/s41598-017-09654-8.
Benkert, P., Künzli, M., & Schwede, T. (2009). QMEAN server for protein model quality estimation. Nucleic acids research, 37(Web Server issue), W510–W514. https://doi.org/10.1093/nar/gkp322.
Bienert, S., Waterhouse, A., de Beer, T. A., Tauriello, G., Studer, G., Bordoli, L., & Schwede, T. (2017). The SWISS-MODEL Repository-new features and functionality. Nucleic acids research, 45(D1), D313–D319. https://doi.org/10.1093/nar/gkw1132.
Bordoli, L., Kiefer, F., Arnold, K., Benkert, P., Battey, J., & Schwede, T. (2009). Protein structure homology modeling using SWISS-MODEL workspace. Nature protocols, 4(1), 1–13. https://doi.org/10.1038/nprot.2008.197
Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., Madden, T.L. BLAST+: architecture and applications. BMC Bioinformatics 10, 421-430 (2009). https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-10-421
El-Gebali, S., Mistry, J., Bateman, A., Eddy, S. R., Luciani, A., Potter, S. C., Qureshi, M., Richardson, L. J., Salazar, G. A., Smart, A., Sonnhammer, E., Hirsh, L., Paladin, L., Piovesan, D., Tosatto, S., & Finn, R. D. (2019). The Pfam protein families database in 2019. Nucleic acids research, 47(D1), D427–D432. https://doi.org/10.1093/nar/gky995
Finch, A. and Pillans, P. (2014). P-glycoprotein and its role in drug-drug interactions. Australian Prescriber, 37, 4 (Aug 2014). doi:10.18773/austprescr.2014.050
Goodsell, David. (2010). PDB-101: Molecule of the Month: P-glycoprotein. PBD. doi:10.2210/rcsb_pdb/mom_2010_3
Guex, N., Peitsch, M.C., Schwede, T. (2009). Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: A historical perspective. Electrophoresis 30, S162-S173 .
Haddad Y., Adam V., Heger Z. (2020) Ten quick tips for homology modeling of high-resolution protein 3D structures. PLoS Comput Biol 16(4): e1007449. https://doi.org/10.1371/journal.pcbi.1007449
Hofmann, K. and Stoffel, W. (1993). TMBASE—A database of membrane spanning protein segments. Biol. Chem. Hoppe-Seyler 374 166. https://embnet.vital-it.ch/software/TMPRED_form.html
Horton, P., Park, K. J., Obayashi, T., Fujita, N., Harada, H., Adams-Collier, C. J., & Nakai, K. (2007). WoLF PSORT: protein localization predictor. Nucleic acids research, 35(Web Server issue), W585–W587. https://doi.org/10.1093/nar/gkm259
Käll, L., Krogh, A., & Sonnhammer, E. L. (2007). Advantages of combined transmembrane topology and signal peptide prediction--the Phobius web server. Nucleic acids research, 35(Web Server issue), W429–W432. https://doi.org/10.1093/nar/gkm256
Kopcho, N., Chang, G., & Komives, E. A. (2019). Dynamics of ABC Transporter P-glycoprotein in Three Conformational States. Scientific reports, 9(1), 15092. https://doi.org/10.1038/s41598-019-50578-2
Laskowski, R. A., MacArthur, M. W., Moss, D. S. & Thornton, J. M. (1993). PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Cryst., 26, 283-291. https://www.ebi.ac.uk/thornton-srv/software/PROCHECK/
Launay, G., Simonson, T. (2008). Homology modelling of protein-protein complexes: a simple method and its possibilities and limitations. BMC Bioinformatics 9, 427 https://doi.org/10.1186/1471-2105-9-427
Linardi, R. L., Stokes, A. M., & Andrews, F. M. (2013). The effect of P-glycoprotein on methadone hydrochloride flux in equine intestinal mucosa. Journal of veterinary pharmacology and therapeutics, 36(1), 43–50. https://doi.org/10.1111/j.1365-2885.2012.01390.x
Loo, T. W., & Clarke, D. M. (2013). Drug rescue distinguishes between different structural models of human P-glycoprotein. Biochemistry, 52(41), 7167–7169. https://doi.org/10.1021/bi401269m
Lovell, S. C., Davis, I. W., Arendall, W. B., 3rd, de Bakker, P. I., Word, J. M., Prisant, M. G., Richardson, J. S., & Richardson, D. C. (2003). Structure validation by Calpha geometry: phi,psi and Cbeta deviation. Proteins, 50(3), 437–450. https://doi.org/10.1002/prot.10286
Mary Vore. (2019). ABCB subfamily (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide to Pharmacology. DOI: https://doi.org/10.2218/gtopdb/F152/2019.4.
Natalini, C.C., and Linardi, R.L. Identification of multi-drug resistance gene (MDR1) in equine ileum. (2006). Ciencia Rural, Santa Maria. 36, 1, 298-300.
O'Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, Rajput B, Robbertse B, Smith-White B, Ako-Adjei D, Astashyn A, Badretdin A, Bao Y, Blinkova O, Brover V, Chetvernin V, Choi J, Cox E, Ermolaeva O, Farrell CM, Goldfarb T, Gupta T, Haft D, Hatcher E, Hlavina W, Joardar VS, Kodali VK, Li W, Maglott D, Masterson P, McGarvey KM, Murphy MR, O'Neill K, Pujar S, Rangwala SH, Rausch D, Riddick LD, Schoch C, Shkeda A, Storz SS, Sun H, Thibaud-Nissen F, Tolstoy I, Tully RE, Vatsan AR, Wallin C, Webb D, Wu W, Landrum MJ, Kimchi A, Tatusova T, DiCuccio M, Kitts P, Murphy TD, Pruitt KD. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. (2016 Jan 4);44(D1):D733-45 PubMed. https://www.ncbi.nlm.nih.gov/refseq/
Ramachandran, S., Kota, P., Ding, F., & Dokholyan, N. V. (2011). Automated minimization of steric clashes in protein structures. Proteins, 79(1), 261–270. https://doi.org/10.1002/prot.22879
Remmert, M., Biegert, A., Hauser, A., Söding, J. HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment. Nat Methods 9, 173-175 (2012). https://www.nature.com/articles/nmeth.1818?message-global=remove
Sonnhammer, E. L. L., von Heijne, G. and Krogh, A.. A hidden Markov model for predicting transmembrane helices in protein sequences. Proceedings of the Sixth International Conference on Intelligent Systems for Molecular Biology, 175-182 (1998). http://www.cbs.dtu.dk/services/TMHMM/
Studer, G., Rempfer, C., Waterhouse, A. M., Gumienny, R., Haas, J., & Schwede, T. (2020). QMEANDisCo-distance constraints applied on model quality estimation. Bioinformatics (Oxford, England), 36(6), 1765–1771. https://doi.org/10.1093/bioinformatics/btz828
Tusnády, G. E., & Simon, I. (2001). The HMMTOP transmembrane topology prediction server. Bioinformatics (Oxford, England), 17(9), 849–850. https://doi.org/10.1093/bioinformatics/17.9.849
Wang, J., Youkharibache, P., Zhang, D., Lanczycki, C. J., Geer, R. C., Madej, T., Phan, L., Ward, M., Lu, S., Marchler, G. H., Wang, Y., Bryant, S. H., Geer, L. Y., & Marchler-Bauer, A. (2020). iCn3D, a web-based 3D viewer for sharing 1D/2D/3D representations of biomolecular structures. Bioinformatics (Oxford, England), 36(1), 131–135. https://doi.org/10.1093/bioinformatics/btz502
Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F.T., de Beer, T.A.P., Rempfer, C., Bordoli, L., Lepore, R., Schwede, T. (2018). SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 46(W1), W296-W303. https://swissmodel.expasy.org
Wheeler, T.J., Clements, J. & Finn, R.D. (2014). Skylign: a tool for creating informative, interactive logos representing sequence alignments and profile hidden Markov models. BMC Bioinformatics 15, 7 https://doi.org/10.1186/1471-2105-15-7
Published
How to Cite
Issue
Section
Copyright (c) 2022 Barachel Butler; Karobi Moitra, CFD, MS, PhD
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.