Interpretable Skin Cancer Diagnosis with Contrastive Language-Image Pre-training

Authors

  • Genebelle Mynn Edgemont Jr./Sr. High School
  • Ms. Greenberg Edgemont Jr./Sr. High School

DOI:

https://doi.org/10.47611/jsrhs.v13i3.7262

Keywords:

Melanoma, Machine-learning, Skin cancer, Contrastive Language-Image Pre-training, Dermatology, Skin lesion, AI

Abstract

Recent advances in machine learning and computer vision have significantly improved the performance of skin cancer diagnostic models. However, their lack of interpretability poses a challenge for clinical adoption, as physicians may find it difficult to trust a diagnosis made by a “black box” system. We propose a novel methodology for skin cancer diagnosis using Contrastive Language-Image Pretraining (CLIP), allowing physicians to provide a set of features in natural language and then determine the weight our model gave each feature in its diagnosis. This approach aims to bridge the communication gap between physicians and machine learning models. We show that the CLIP model is able to diagnose skin cancer in a zero-shot setting and provide insight into how each provided feature contributes to its diagnosis.

Downloads

Download data is not yet available.

References or Bibliography

World Health Organization (WHO), Radiation: Ultraviolet (UV) radiation and skin cancer, Accessed: 2024-5-20.

https://www.who.int/news-room/q-a-detail/radiation-ultraviolet-(uv)-radiation-and-skin-cancer.

Jerant, A. F., Johnson, J. T., Sheridan, C. D., & Caffrey, T. J. (2000). Early detection and treatment of skin cancer. American family physician, 62(2), 357–382.

https://pubmed.ncbi.nlm.nih.gov/10929700/

Celebi, M. E., Kingravi, H. A., Uddin, B., Iyatomi, H., Aslandogan, Y. A., Stoecker, W. V., & Moss, R. H. (2007). A methodological approach to the classification of dermoscopy images. Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society, 31(6), 362–373.

https://doi.org/10.1016/j.compmedimag.2007.01.003

Ganster, H., Pinz, P., Rohrer, R., Wildling, E., Binder, M., & Kittler, H. (2001). Automated melanoma recognition. IEEE Transactions on Medical Imaging, 20(3), 233-239.

https://doi.org/10.1109/42.918473

Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., & Thrun, S. (2017). Dermatologist-level classification of skin cancer with deep neural networks. Nature, 542(7639), 115–118.

https://doi.org/10.1038/nature21056

Mahmud, F., Mahfiz, M. M., Kabir, M. Z. I., & Abdullah, Y. (2023). An Interpretable Deep Learning Approach for Skin Cancer Categorization. arXiv preprint arXiv:2312.10696.

https://doi.org/10.48550/arXiv.2312.10696

Mridha, K., Uddin, M., Shin, J., Khadka, S., & Mridha, M. (2023). An Interpretable Skin Cancer Classification Using Optimized Convolutional Neural Network for a Smart Healthcare System. IEEE Access, 11, 41003-41018.

https://doi.org/10.1109/ACCESS.2023.3269694

Alfi, I. A., Rahman, M. M., Shorfuzzaman, M., & Nazir, A. (2022). A non-invasive interpretable diagnosis of melanoma skin cancer using deep learning and ensemble stacking of machine learning models. Diagnostics, 12(3), 726.

https://www.mdpi.com/2075-4418/12/3/726

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., ... & Sutskever, I. (2021, July). Learning transferable visual models from natural language supervision. In International conference on machine learning (pp. 8748-8763). PMLR.

https://doi.org/10.48550/arXiv.2103.00020

Zhao, Z., Liu, Y., Wu, H., Li, Y., Wang, S., Teng, L., ... & Shen, D. (2023). Clip in medical imaging: A comprehensive survey. arXiv preprint arXiv:2312.07353.

https://doi.org/10.48550/arXiv.2312.07353

Li, X., Wu, J., Chen, E. Z., & Jiang, H. (2019, July). From deep learning towards finding skin lesion biomarkers. In 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 2797-2800). IEEE.

https://doi.org/10.1109/EMBC.2019.8857334

Barata, C., Celebi, M. E., & Marques, J. S. (2021). Explainable skin lesion diagnosis using taxonomies. Pattern Recognition, 110, 107413.

https://doi.org/10.1016/j.patcog.2020.107413

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778).

https://doi.org/10.48550/arXiv.1512.03385

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., ... & Houlsby, N. (2020). An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929.

https://doi.org/10.48550/arXiv.2010.11929

Devlin, J., Chang, M.W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers) (pp. 4171–4186). Association for Computational Linguistics.

https://doi.org/10.18653/v1/N19-1423

Tsao, H., Olazagasti, J. M., Cordoro, K. M., Brewer, J. D., Taylor, S. C., Bordeaux, J. S., ... & Begolka, W. S. (2015). Early detection of melanoma: reviewing the ABCDEs. Journal of the American Academy of Dermatology, 72(4), 717-723.

https://doi.org/10.1016/j.jaad.2015.01.025

Tan, M., & Le, Q. (2019, May). Efficientnet: Rethinking model scaling for convolutional neural networks. In International conference on machine learning (pp. 6105-6114). PMLR.

https://doi.org/10.48550/arXiv.1905.11946

Fanconi, C. (2019) Skin Cancer: Malignant vs. Benign, Version 1. Retrieved March 20, 2024 from: https://www.kaggle.com/datasets/fanconic/skin-cancer-malignant-vs-benign/data

Published

08-31-2024

How to Cite

Mynn, G., & Greenberg, S. (2024). Interpretable Skin Cancer Diagnosis with Contrastive Language-Image Pre-training. Journal of Student Research, 13(3). https://doi.org/10.47611/jsrhs.v13i3.7262

Issue

Section

HS Research Articles