A Review of the Existence of Space-Time Singularities

Authors

  • Mihir Bhatlawande The Orchid School
  • Shilpa Ghadge The Orchid School

DOI:

https://doi.org/10.47611/jsrhs.v13i3.7234

Keywords:

Black Holes, Singularity, General Relativity

Abstract

Ever since the discovery of the Schwarzschild metric the structure of the interiors of black holes has been one of the biggest questions of gravitational physics. The Raychaudhari theorem proposed a possible singularity at the center, and the Penrose Singularity theorem claimed to prove the existence of the singularity at the center of black holes. This was taken to be fact by the community until recently when a paper by physicist Roy Kerr laid down a structured argument against singularities. We analyze both the argument for as well as against singularities. It was seen that what the Penrose singularity theorem proved was not the existence of singularities. Further research and new physics are required to determine whether singularities exist.

Downloads

Download data is not yet available.

Author Biography

Shilpa Ghadge, The Orchid School

Teacher of physics and mathematics.
Senior Secondary Division

References or Bibliography

Siemssen, D. (2015). The Semiclassical Einstein Equation on Cosmological Spacetimes. ArXiv. /abs/1503.01826 https://doi.org/10.48550/arXiv.1503.01826

Kar, S., Sengupta, S. The Raychaudhuri equations: A brief review. Pramana - J Phys 69, 49–76 (2007). https://doi.org/10.1007/s12043-007-0110-9

Senovilla, J. M., & Garfinkle, D. (2014). The 1965 Penrose singularity theorem. ArXiv. https://doi.org/10.1088/0264-9381/32/12/124008

EDDINGTON, A. A Comparison of Whitehead's and Einstein's Formulæ. Nature 113, 192 (1924). https://doi.org/10.1038/113192a0

Lust, Dieter & Vleeshouwers, Ward. (2018). Black Hole Information and Thermodynamics.

Kogut, John. (2019). Supplementary Lecture Series 11: General Relativity for Physics Students.

Kerr, R. P. (2023). Do Black Holes have Singularities? ArXiv. /abs/2312.00841 https://doi.org/10.48550/arXiv.2312.00841

Penrose, R. (1965). Gravitational Collapse and Space-Time Singularities. Phys. Rev. Lett., 14, 57–59. https://doi.org/10.1103/PhysRevLett.14.57

Oppenheimer, J., & Snyder, H. (1939). On Continued Gravitational Contraction. Phys. Rev., 56, 455–459. https://doi.org/10.1103/PhysRev.56.455

Raychaudhuri, A. (1955). Relativistic Cosmology. I. Phys. Rev., 98, 1123–1126. https://doi.org/10.1103/PhysRev.98.1123

Schwarzschild, K. (1916). Uber das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie. Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften, 189-196. https://ui.adsabs.harvard.edu/abs/1916SPAW.......189S

Kerr, R. (1963). Gravitational Field of a Spinning Mass as an Example of Algebraically Special Metrics. Phys. Rev. Lett., 11, 237–238. https://doi.org/10.1103/PhysRevLett.11.237

Hawking, S., & Ellis, G. (2023). The Large Scale Structure of Space-Time. Cambridge University Press. https://doi.org/10.1017/9781009253161

Kruskal, M. (1960). Maximal Extension of Schwarzschild Metric. Phys. Rev., 119, 1743–1745. https://doi.org/10.1103/PhysRev.119.1743

Visser, M. (2007). The Kerr spacetime: A brief introduction. ArXiv. /abs/0706.0622

https://doi.org/10.48550/arXiv.0706.0622

Stephen William Hawking, & Roger Penrose (1970). The singularities of gravitational collapse and cosmology. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 314, 529 - 548. https://doi.org/10.1098/rspa.1970.0021

Published

08-31-2024

How to Cite

Bhatlawande, M., & Ghadge, S. (2024). A Review of the Existence of Space-Time Singularities. Journal of Student Research, 13(3). https://doi.org/10.47611/jsrhs.v13i3.7234

Issue

Section

HS Review Articles