A Review of the Existence of Space-Time Singularities
DOI:
https://doi.org/10.47611/jsrhs.v13i3.7234Keywords:
Black Holes, Singularity, General RelativityAbstract
Ever since the discovery of the Schwarzschild metric the structure of the interiors of black holes has been one of the biggest questions of gravitational physics. The Raychaudhari theorem proposed a possible singularity at the center, and the Penrose Singularity theorem claimed to prove the existence of the singularity at the center of black holes. This was taken to be fact by the community until recently when a paper by physicist Roy Kerr laid down a structured argument against singularities. We analyze both the argument for as well as against singularities. It was seen that what the Penrose singularity theorem proved was not the existence of singularities. Further research and new physics are required to determine whether singularities exist.
Downloads
References or Bibliography
Siemssen, D. (2015). The Semiclassical Einstein Equation on Cosmological Spacetimes. ArXiv. /abs/1503.01826 https://doi.org/10.48550/arXiv.1503.01826
Kar, S., Sengupta, S. The Raychaudhuri equations: A brief review. Pramana - J Phys 69, 49–76 (2007). https://doi.org/10.1007/s12043-007-0110-9
Senovilla, J. M., & Garfinkle, D. (2014). The 1965 Penrose singularity theorem. ArXiv. https://doi.org/10.1088/0264-9381/32/12/124008
EDDINGTON, A. A Comparison of Whitehead's and Einstein's Formulæ. Nature 113, 192 (1924). https://doi.org/10.1038/113192a0
Lust, Dieter & Vleeshouwers, Ward. (2018). Black Hole Information and Thermodynamics.
Kogut, John. (2019). Supplementary Lecture Series 11: General Relativity for Physics Students.
Kerr, R. P. (2023). Do Black Holes have Singularities? ArXiv. /abs/2312.00841 https://doi.org/10.48550/arXiv.2312.00841
Penrose, R. (1965). Gravitational Collapse and Space-Time Singularities. Phys. Rev. Lett., 14, 57–59. https://doi.org/10.1103/PhysRevLett.14.57
Oppenheimer, J., & Snyder, H. (1939). On Continued Gravitational Contraction. Phys. Rev., 56, 455–459. https://doi.org/10.1103/PhysRev.56.455
Raychaudhuri, A. (1955). Relativistic Cosmology. I. Phys. Rev., 98, 1123–1126. https://doi.org/10.1103/PhysRev.98.1123
Schwarzschild, K. (1916). Uber das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie. Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften, 189-196. https://ui.adsabs.harvard.edu/abs/1916SPAW.......189S
Kerr, R. (1963). Gravitational Field of a Spinning Mass as an Example of Algebraically Special Metrics. Phys. Rev. Lett., 11, 237–238. https://doi.org/10.1103/PhysRevLett.11.237
Hawking, S., & Ellis, G. (2023). The Large Scale Structure of Space-Time. Cambridge University Press. https://doi.org/10.1017/9781009253161
Kruskal, M. (1960). Maximal Extension of Schwarzschild Metric. Phys. Rev., 119, 1743–1745. https://doi.org/10.1103/PhysRev.119.1743
Visser, M. (2007). The Kerr spacetime: A brief introduction. ArXiv. /abs/0706.0622
https://doi.org/10.48550/arXiv.0706.0622
Stephen William Hawking, & Roger Penrose (1970). The singularities of gravitational collapse and cosmology. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 314, 529 - 548. https://doi.org/10.1098/rspa.1970.0021
Published
How to Cite
Issue
Section
Copyright (c) 2024 Mihir Bhatlawande; Shilpa Ghadge

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.