Leveraging cancer mutations and metabolism for regenerative medicine applications
DOI:
https://doi.org/10.47611/jsrhs.v13i3.6999Keywords:
Cancer mutations, Metabolism, Cancer, Regenerative MedicineAbstract
Cellular replication rates can vary between different cell types and the genes encoded within them. However, there are ways to manipulate cells in order to increase their rate of cell turnover. Cancer cells are an important point of study, as one of their characteristic traits is their rapid reproduction. The mutations that cause cancer cells to grow faster than normal either alter genes or change metabolic pathways. This can be manipulated in normal cells through upregulation or downregulation to artificially induce rapid rates of reproduction in normal cells. Mitochondrial function also impacts the rate of cellular processes and turnover, and can be made more efficient by providing specific nutrients to cells that stimulate mitochondrial function. These technologies can be used to induce higher rates of turnover in normal cells from different parts of the body for the purpose of regenerative medicine and medicinal research.
Downloads
References or Bibliography
Atig, R. K., Hsouna, S., Beraud-Colomb, E., & Abdelhak, S. (2009). ADN mitochondrial: propriétés et applications [Mitochondrial DNA: properties and applications]. Archives de l'Institut Pasteur de Tunis, 86(1-4), 3–14.
Bachman, K. E., & Park, B. H. (2005). Duel nature of TGF-beta signaling: tumor suppressor vs. tumor promoter. Current opinion in oncology, 17(1), 49–54. https://doi.org/10.1097/01.cco.0000143682.45316.ae
Costa-Silva, D. R., Barros-Oliveira, M. D., Borges, R. S., Tavares, C. B., Borges, U. S., Alves-Ribeiro, F. A., Silva, V. C., & Silva, B. B. (2016). Insulin-like Growth Factor 1 gene polymorphism and breast cancer risk. Anais da Academia Brasileira de Ciencias, 88(4), 2349–2356. https://doi.org/10.1590/0001-3765201620160169
Friedman, J. R., Richbart, S. D., Merritt, J. C., Brown, K. C., Nolan, N. A., Akers, A. T., Lau, J. K., Robateau, Z. R., Miles, S. L., & Dasgupta, P. (2019). Acetylcholine signaling system in progression of lung cancers. Pharmacology & therapeutics, 194, 222–254. https://doi.org/10.1016/j.pharmthera.2018.10.002
Lagouge, M., Argmann, C., Gerhart-Hines, Z., Meziane, H., Lerin, C., Daussin, F., Messadeq, N., Milne, J., Lambert, P., Elliott, P., Geny, B., Laakso, M., Puigserver, P., & Auwerx, J. (2006). Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell, 127(6), 1109–1122. https://doi.org/10.1016/j.cell.2006.11.013
Li, J., Ju, J., Ni, B., & Wang, H. (2016). The emerging role of miR-506 in cancer. Oncotarget, 7(38), 62778–62788. https://doi.org/10.18632/oncotarget.11294
Li, Z., Liu, Z., Dong, S., Zhang, J., Tan, J., Wang, Y., Ge, C., Li, R., Xue, Y., Li, M., Wang, W., Xiang, X., Yang, J., Ding, H., Geng, T., Yao, K., & Song, X. (2015). miR-506 Inhibits Epithelial-to-Mesenchymal Transition and Angiogenesis in Gastric Cancer. The American journal of pathology, 185(9), 2412–2420. https://doi.org/10.1016/j.ajpath.2015.05.017
Li, J., Wu, H., Li, W., Yin, L., Guo, S., Xu, X., Ouyang, Y., Zhao, Z., Liu, S., Tian, Y., Tian, Z., Ju, J., Ni, B., & Wang, H. (2016). Downregulated miR-506 expression facilitates pancreatic cancer progression and chemoresistance via SPHK1/Akt/NF-κB signaling. Oncogene, 35(42), 5501–5514. https://doi.org/10.1038/onc.2016.90
Marin-Valencia, I., Yang, C., Mashimo, T., Cho, S., Baek, H., Yang, X. L., Rajagopalan, K. N., Maddie, M., Vemireddy, V., Zhao, Z., Cai, L., Good, L., Tu, B. P., Hatanpaa, K. J., Mickey, B. E., Matés, J. M., Pascual, J. M., Maher, E. A., Malloy, C. R., Deberardinis, R. J., … Bachoo, R. M. (2012). Analysis of tumor metabolism reveals mitochondrial glucose oxidation in genetically diverse human glioblastomas in the mouse brain in vivo. Cell metabolism, 15(6), 827–837. https://doi.org/10.1016/j.cmet.2012.05.001
McMackin, C. J., Widlansky, M. E., Hamburg, N. M., Huang, A. L., Weller, S., Holbrook, M., Gokce, N., Hagen, T. M., Keaney, J. F., Jr, & Vita, J. A. (2007). Effect of combined treatment with alpha-Lipoic acid and acetyl-L-carnitine on vascular function and blood pressure in patients with coronary artery disease. Journal of clinical hypertension (Greenwich, Conn.), 9(4), 249–255. https://doi.org/10.1111/j.1524-6175.2007.06052.x
Pal, S., Sharma, A., Mathew, S. P., & Jaganathan, B. G. (2022). Targeting cancer-specific metabolic pathways for developing novel cancer therapeutics. Frontiers in immunology, 13, 955476. https://doi.org/10.3389/fimmu.2022.955476
Pizzorno J. (2014). Mitochondria-Fundamental to Life and Health. Integrative medicine (Encinitas, Calif.), 13(2), 8–15.
Richbart, S. D., Merritt, J. C., Nolan, N. A., & Dasgupta, P. (2021). Acetylcholinesterase and human cancers. Advances in cancer research, 152, 1–66. https://doi.org/10.1016/bs.acr.2021.05.001
Rusecka, J., Kaliszewska, M., Bartnik, E., & Tońska, K. (2018). Nuclear genes involved in mitochondrial diseases caused by instability of mitochondrial DNA. Journal of applied genetics, 59(1), 43–57. https://doi.org/10.1007/s13353-017-0424-3
Ryan, M. J., Dudash, H. J., Docherty, M., Geronilla, K. B., Baker, B. A., Haff, G. G., Cutlip, R. G., & Alway, S. E. (2010). Vitamin E and C supplementation reduces oxidative stress, improves antioxidant enzymes and positive muscle work in chronically loaded muscles of aged rats. Experimental gerontology, 45(11), 882–895. https://doi.org/10.1016/j.exger.2010.08.002
Sachdev, D., & Yee, D. (2001). The IGF system and breast cancer. Endocrine-related cancer, 8(3), 197–209. https://doi.org/10.1677/erc.0.0080197
Wei, Z., Liu, X., Cheng, C., Yu, W., & Yi, P. (2021). Metabolism of Amino Acids in Cancer. Frontiers in cell and developmental biology, 8, 603837. https://doi.org/10.3389/fcell.2020.603837
Yang, J., Nie, J., Ma, X., Wei, Y., Peng, Y., & Wei, X. (2019). Targeting PI3K in cancer: mechanisms and advances in clinical trials. Molecular cancer, 18(1), 26. https://doi.org/10.1186/s12943-019-0954-x
Zhou, J., Terluk, M. R., Orchard, P. J., Cloyd, J. C., & Kartha, R. V. (2021). N-Acetylcysteine Reverses the Mitochondrial Dysfunction Induced by Very Long-Chain Fatty Acids in Murine Oligodendrocyte Model of Adrenoleukodystrophy. Biomedicines, 9(12), 1826. https://doi.org/10.3390/biomedicines9121826
Published
How to Cite
Issue
Section
Copyright (c) 2024 Alekhya Reddy

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.