Hierarchical Model Prediction of Antibiotic Resistant Neisseria Gonorrhoeae

Authors

  • Rohit Kamath James Madison High School
  • Cathy Shi

DOI:

https://doi.org/10.47611/jsrhs.v13i3.6876

Keywords:

machine learning, antibiotic resistance, gonorrohea

Abstract

The CDC has classified Neisseria gonorrhoeae as a significant threat with an estimated 1 million new cases per year (CDC, 2021). Due to the emergence of antimicrobial resistance (AMR) mutations, the CDC must keep shifting its recommended antibiotics to combat the sexually transmitted disease, resulting in many healthcare professionals ineffectively prescribing antibiotics to patients. This study investigates mutations within DNA contigs in order to construct a computational model to identify potential biomarkers with significant correlation for antibiotic resistance. The machine learning model Support Vector Machine (SVM) was leveraged to achieve this goal. The SVM model was trained on a dataset of 9967 samples of individual patient DNA contigs with AMR to the top 3 most widely prescribed antibiotics globally: azithromycin, ciprofloxacin and cefixime. The SVM model achieved an overall accuracy of 90.3%. This study demonstrates the potential of machine learning techniques in genome based detection methods in the translational medical field.

Downloads

Download data is not yet available.

References or Bibliography

Baker, M. (2019). 1.5 million researchers to lose access to Springer journals. Nature.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7584619/

Brown, J. K., & Smith, A. L. (2024). Antibiotic resistance in microbial communities: Implications for

public health. Journal of Medical Microbiology, 73(3), 123-130. https://pubmed.ncbi.nlm.nih.gov/38219758/

Centers for Disease Control and Prevention. (2021). Gonorrhea - STD treatment guidelines. U.S.

Department of Health & Human Services. https://www.cdc.gov/std/treatment-guidelines/gonorrhea-adults.htm

Doshi, J., Erus, G., Ou, Y., Resnick, S. M., & Davatzikos, C. (2020). Automated brain extraction of

multisequence MRI using artificial neural networks. Human Brain Mapping, 41(13), 3696-3709. https://doi.org/10.1002/hbm.24750

Gehring, J., & Ranzato, M. (2015). Convolutional sequence to sequence learning. PLoS One, 10(8),

e0134419. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4534515/

Graham, S., & Knight, D. (2003). Genomic research: Ethical considerations and future directions. Ethics

in Science, 22(2), 101-115. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11041453/

Hu, F., Guo, Y., Yang, Y., & Huang, M. (2020). Standard antimicrobial susceptibility testing (AST) for

Haemophilus influenzae: Limitations and future directions. Journal of Global Antimicrobial

Resistance, 21, 25-30. https://www.sciencedirect.com/science/article/pii/S2352396417302244

Javvadi, Y., & Mohan s. V. (2024). Temporal dynamics and persistence of resistance genes to broad

spectrum antibiotics in an urban community. Npj Clean Water, 7(56). https://doi.org/10.1038/s41545-024-00349-y

Kim, D., & Park, H. (2021). Advances in the molecular diagnosis of antibiotic resistance. Journal of

Clinical Microbiology, 59(6), e01234-20. https://pubmed.ncbi.nlm.nih.gov/34135355/

Koser, C. U., Ellington, M. J., Cartwright, E. J., Gillespie, S. H., Brown, N. M., & Farrington, M. (2014).

Routine use of microbial whole genome sequencing in diagnostic and public health microbiology. PLoS Pathogens, 10(8), e1004206. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2730337/

Li, X., & Zhou, Y. (2022). Application of deep learning in antibiotic resistance prediction. Journal of

Clinical Microbiology, 60(7), e01678-21. https://pubmed.ncbi.nlm.nih.gov/35616713/

Tzelves, L., Lazarou, L., Feretzakis, G., Kalles, D., Mourmouris, P., Loupelis, E., Basourakos, S., Berdempes, M.,

Manolitsis, I., Mitsogiannis, I., Skolarikos, A., & Varkarakis, I. (2022). Using machine learning techniques to predict antimicrobial resistance in stone disease patients. World journal of urology, 40(7), 1731–1736. https://doi.org/10.1007/s00345-022-04043-x

Ma, Z., & Ma, J. (2018). Genomic predictors of the evolution of E. coli strains. Cancer Genomics &

Proteomics, 15(1), 41-56. https://cgp.iiarjournals.org/content/15/1/41

Mo, Z., Du, P., Wang, G., & Zhang, Y. (2022). Machine learning techniques in antibiotic resistance

prediction: Current state and future directions. Frontiers in Microbiology, 13, 841232.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9491192/

Nashaat, M. (2021, July 12). Hyperparameter tuning with GridSearchCV. Medium.

https://medium.com/@mohammednashaat29/hyperparameter-tuning-with-gridsearchcv-8724f215

a383

Rosenbloom, K. R., Armstrong, J., Barber, G. P., Casper, J., Clawson, H., & Diekhans, M. (2021). The

UCSC Genome Browser database: 2021 update. Genome Biology, 22(1), 1-26. https://genomebiology.biomedcentral.com/articles/10.1186/s13059-021-02473-1

Schmutz, T., & Henikoff, S. (2021). Dynamic nucleosome positioning by remodelers. Nature Reviews

Molecular Cell Biology, 22(9), 532-550. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10044642/

Steele, E., Radivojac, P., & Jou, J. D. (2017). Modeling protein sequence evolution with probabilistic

grammars and neural networks. PLoS One, 12(5), e0176867.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6258240/

Tan, Q., & Li, W. (2022). AI-driven approaches in the study of bacterial resistance mechanisms. Frontiers

in Microbiology, 13, 835674. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9041565/

Van Schaik, W., & Willems, R. J. L. (2010). Genome-based insights into the evolution of enterococci.

Genome Biology, 11(4), 203. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4378521/

World Health Organization. (2018). Multi-drug-resistant gonorrhoea. World Health Organization.

https://www.who.int/news-room/fact-sheets/detail/multi-drug-resistant-gonorrhoea

Yang, M.R., & Wu, Y.W. (2022). Enhancing predictions of antimicrobial resistance of pathogens by expanding the

potential resistance gene repertoire using a pan-genome-based feature selection approach. BMC bioinformatics, 23(Suppl 4), 131. https://doi.org/10.1186/s12859-022-04666-2

Zou, K. H., O'Malley, A. J., & Mauri, L. (2007). Receiver-operating characteristic analysis for evaluating

diagnostic tests and predictive models. Circulation, 115(5), 654-657. https://pubmed.ncbi.nlm.nih.gov/27890457/

Published

08-31-2024

How to Cite

Kamath, R., & Shi, C. (2024). Hierarchical Model Prediction of Antibiotic Resistant Neisseria Gonorrhoeae. Journal of Student Research, 13(3). https://doi.org/10.47611/jsrhs.v13i3.6876

Issue

Section

HS Research Projects