Hierarchical Model Prediction of Antibiotic Resistant Neisseria Gonorrhoeae
DOI:
https://doi.org/10.47611/jsrhs.v13i3.6876Keywords:
machine learning, antibiotic resistance, gonorroheaAbstract
The CDC has classified Neisseria gonorrhoeae as a significant threat with an estimated 1 million new cases per year (CDC, 2021). Due to the emergence of antimicrobial resistance (AMR) mutations, the CDC must keep shifting its recommended antibiotics to combat the sexually transmitted disease, resulting in many healthcare professionals ineffectively prescribing antibiotics to patients. This study investigates mutations within DNA contigs in order to construct a computational model to identify potential biomarkers with significant correlation for antibiotic resistance. The machine learning model Support Vector Machine (SVM) was leveraged to achieve this goal. The SVM model was trained on a dataset of 9967 samples of individual patient DNA contigs with AMR to the top 3 most widely prescribed antibiotics globally: azithromycin, ciprofloxacin and cefixime. The SVM model achieved an overall accuracy of 90.3%. This study demonstrates the potential of machine learning techniques in genome based detection methods in the translational medical field.
Downloads
References or Bibliography
Baker, M. (2019). 1.5 million researchers to lose access to Springer journals. Nature.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7584619/
Brown, J. K., & Smith, A. L. (2024). Antibiotic resistance in microbial communities: Implications for
public health. Journal of Medical Microbiology, 73(3), 123-130. https://pubmed.ncbi.nlm.nih.gov/38219758/
Centers for Disease Control and Prevention. (2021). Gonorrhea - STD treatment guidelines. U.S.
Department of Health & Human Services. https://www.cdc.gov/std/treatment-guidelines/gonorrhea-adults.htm
Doshi, J., Erus, G., Ou, Y., Resnick, S. M., & Davatzikos, C. (2020). Automated brain extraction of
multisequence MRI using artificial neural networks. Human Brain Mapping, 41(13), 3696-3709. https://doi.org/10.1002/hbm.24750
Gehring, J., & Ranzato, M. (2015). Convolutional sequence to sequence learning. PLoS One, 10(8),
e0134419. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4534515/
Graham, S., & Knight, D. (2003). Genomic research: Ethical considerations and future directions. Ethics
in Science, 22(2), 101-115. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11041453/
Hu, F., Guo, Y., Yang, Y., & Huang, M. (2020). Standard antimicrobial susceptibility testing (AST) for
Haemophilus influenzae: Limitations and future directions. Journal of Global Antimicrobial
Resistance, 21, 25-30. https://www.sciencedirect.com/science/article/pii/S2352396417302244
Javvadi, Y., & Mohan s. V. (2024). Temporal dynamics and persistence of resistance genes to broad
spectrum antibiotics in an urban community. Npj Clean Water, 7(56). https://doi.org/10.1038/s41545-024-00349-y
Kim, D., & Park, H. (2021). Advances in the molecular diagnosis of antibiotic resistance. Journal of
Clinical Microbiology, 59(6), e01234-20. https://pubmed.ncbi.nlm.nih.gov/34135355/
Koser, C. U., Ellington, M. J., Cartwright, E. J., Gillespie, S. H., Brown, N. M., & Farrington, M. (2014).
Routine use of microbial whole genome sequencing in diagnostic and public health microbiology. PLoS Pathogens, 10(8), e1004206. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2730337/
Li, X., & Zhou, Y. (2022). Application of deep learning in antibiotic resistance prediction. Journal of
Clinical Microbiology, 60(7), e01678-21. https://pubmed.ncbi.nlm.nih.gov/35616713/
Tzelves, L., Lazarou, L., Feretzakis, G., Kalles, D., Mourmouris, P., Loupelis, E., Basourakos, S., Berdempes, M.,
Manolitsis, I., Mitsogiannis, I., Skolarikos, A., & Varkarakis, I. (2022). Using machine learning techniques to predict antimicrobial resistance in stone disease patients. World journal of urology, 40(7), 1731–1736. https://doi.org/10.1007/s00345-022-04043-x
Ma, Z., & Ma, J. (2018). Genomic predictors of the evolution of E. coli strains. Cancer Genomics &
Proteomics, 15(1), 41-56. https://cgp.iiarjournals.org/content/15/1/41
Mo, Z., Du, P., Wang, G., & Zhang, Y. (2022). Machine learning techniques in antibiotic resistance
prediction: Current state and future directions. Frontiers in Microbiology, 13, 841232.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9491192/
Nashaat, M. (2021, July 12). Hyperparameter tuning with GridSearchCV. Medium.
https://medium.com/@mohammednashaat29/hyperparameter-tuning-with-gridsearchcv-8724f215
a383
Rosenbloom, K. R., Armstrong, J., Barber, G. P., Casper, J., Clawson, H., & Diekhans, M. (2021). The
UCSC Genome Browser database: 2021 update. Genome Biology, 22(1), 1-26. https://genomebiology.biomedcentral.com/articles/10.1186/s13059-021-02473-1
Schmutz, T., & Henikoff, S. (2021). Dynamic nucleosome positioning by remodelers. Nature Reviews
Molecular Cell Biology, 22(9), 532-550. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10044642/
Steele, E., Radivojac, P., & Jou, J. D. (2017). Modeling protein sequence evolution with probabilistic
grammars and neural networks. PLoS One, 12(5), e0176867.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6258240/
Tan, Q., & Li, W. (2022). AI-driven approaches in the study of bacterial resistance mechanisms. Frontiers
in Microbiology, 13, 835674. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9041565/
Van Schaik, W., & Willems, R. J. L. (2010). Genome-based insights into the evolution of enterococci.
Genome Biology, 11(4), 203. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4378521/
World Health Organization. (2018). Multi-drug-resistant gonorrhoea. World Health Organization.
https://www.who.int/news-room/fact-sheets/detail/multi-drug-resistant-gonorrhoea
Yang, M.R., & Wu, Y.W. (2022). Enhancing predictions of antimicrobial resistance of pathogens by expanding the
potential resistance gene repertoire using a pan-genome-based feature selection approach. BMC bioinformatics, 23(Suppl 4), 131. https://doi.org/10.1186/s12859-022-04666-2
Zou, K. H., O'Malley, A. J., & Mauri, L. (2007). Receiver-operating characteristic analysis for evaluating
diagnostic tests and predictive models. Circulation, 115(5), 654-657. https://pubmed.ncbi.nlm.nih.gov/27890457/
Published
How to Cite
Issue
Section
Copyright (c) 2024 Rohit Kamath; Cathy Shi

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.