The Polarization of Tumor-Associated Macrophages as an Effective Therapeutic Strategy: A Comprehensive Analysis

Authors

  • Aryan Kadali Gifted Gabber
  • Dr. Prahlad Parajuli Research Assistant Professor at Wayne State University
  • Jothsna Kethar Gifted Gabber
  • Virgel Torremocha University of Southeastern Philippines

DOI:

https://doi.org/10.47611/jsrhs.v13i2.6817

Keywords:

Cancer, Tumor, Macrophages, M1, M2, TAM, Nanoparticles

Abstract

The complex interplay between tumors and their microenvironment presents challenges in cancer therapy, sparking interest in novel immunotherapeutic strategies. Current therapeutic approaches lack consistency and pose significant risks to patients. Tumor-associated macrophages (TAMs) play a pivotal role in tumor progression or inhibition, depending on their polarization state. This comprehensive analysis explores the potential of selectively repolarizing TAMs towards an anti-tumor phenotype as an effective therapeutic strategy. Nanoparticle-based delivery systems, such as polymeric, lipid-based, and inorganic nanoparticles, offer promising TAM targeting and repolarization avenues. These strategies demonstrate the ability to shift TAMs from a pro-tumoral M2 phenotype to an anti-tumoral M1 phenotype, resulting in significant anti-tumor effects. These processes have been both in vivo and in vitro, depending on the progress of the process. Nanoparticles, for example, have primarily been in vitro, but some have reached the in vivo stage. Despite the complexity of tumor immunology, the repolarization of TAMs emerges as a promising and versatile immunotherapeutic approach with reduced adverse effects compared to traditional treatments. This study underscores the importance of continued research and development in TAM repolarization, paving the way for future advancements and improved cancer therapies.

Downloads

Download data is not yet available.

References or Bibliography

Aldawsari, H. M., Gorain, B., Alhakamy, N. A., & Md, S. (2020). Role of therapeutic agents on repolarisation of tumour-associated macrophage to halt lung cancer progression. Journal of Drug Targeting, 28(2), 166-175. https://doi.org/10.1080/1061186X.2019.1648478

Anand, N., Peh, K. H., & Kolesar, J. M. (2023). Macrophage repolarization as a therapeutic strategy for osteosarcoma. International Journal of Molecular Sciences, 24(3), 2858. https://doi.org/10.3390/ijms24032858

Bolli, E., Scherger, M., Arnouk, S. M., Pombo Antunes, A. R., Straßburger, D., Urschbach, M., Stickdorn, J., De Vlaminck, K., Movahedi, K., Räder, H. J., Hernot, S., Besenius, P., Van Ginderachter, J. A., & Nuhn, L. (2021). Targeted repolarization of tumor‐associated macrophages via imidazoquinoline‐linked nanobodies. Advanced Science, 8(10), 1-12. https://doi.org/10.1002/advs.202004574

Buhtoiarov, I. N., Sondel, P. M., Wigginton, J. M., Buhtoiarova, T. N., Yanke, E. M., Mahvi, D. A., & Rakhmilevich, A. L. (2011). Anti-tumour synergy of cytotoxic chemotherapy and anti-CD40 plus cpg-odn immunotherapy through repolarization of tumour-associated macrophages. Immunology, 132(2), 226-239. https://doi.org/10.1111/j.1365-2567.2010.03357.x

Feng, Y., Ye, Z., Song, F., He, Y., & Liu, J. (2022). The role of TAMs in tumor microenvironment and new research progress. Stem Cells International, 1-11.

Fuchs, A. K., Syrovets, T., Haas, K. A., Loos, C., Musyanovych, A., Mailänder, V., Landfester, K., & Simmet, T. (2016). Carboxyl- and amino-functionalized polystyrene nanoparticles differentially affect the polarization profile of M1 and M2 macrophage subsets. Biomaterials, 85, 78–87. https://doi.org/10.1016/j.biomaterials.2016.01.06

Gubin, M. M., Noguchi, T., Ivanova, Y., Arthur, C. D., Vesely, M. D., Lam, S. S. K., Pearce, E. L., Artyomov, M. N., Schreiber, R. D., Allison, J. P., Freeman, G. J., Sharpe, A. H., Aebersold, R., Melief, C. J. M., Mardis, E. R., Zhang, X., Gillanders, W. E., Schuster, H., Rammensee, H.-G., & Caron, E. (2014). Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature, 515(7528), 577-581. https://doi.org/10.1038/nature13988

Jahandideh, A., Yarizadeh, M., Noei-Khesht Masjedi, M., Fatehnejad, M., Jahandideh, R., Soheili, R., Eslami, Y., Zokaei, M., Ahmadvand, A., Ghalamkarpour, N., Kumar Pandey, R., Nabi Afjadi, M., & Payandeh, Z. (2023). Macrophage's role in solid tumors: Two edges of a sword. Cancer Cell International, 23(1), 1-25. https://doi.org/10.1186/s12935-023-02999-3

Kumar, V. (2021). Innate lymphoid cells and adaptive immune cells cross-talk: A secret talk revealed in immune homeostasis and different inflammatory conditions. International Reviews of Immunology, 40(3), 217-251. https://doi.org/10.1080/08830185.2021.1895145

Li, M., Yang, Y., Xiong, L., Jiang, P., Wang, J., & Li, C. (2023). Metabolism, metabolites, and macrophages in cancer. Journal of Hematology & Oncology, 16(1), 1-22. https://doi.org/10.1186/s13045-023-01478-6

Liu, S., Wu, W., Du, Y., Yin, H., Chen, Q., Yu, W., Wang, W., Yu, J., Liu, L., Lou, W., & Pu, N. (2023). The evolution and heterogeneity of neutrophils in cancers: Origins, subsets, functions, orchestrations and clinical applications. Molecular Cancer, 22(1), 1-21. https://doi.org/10.1186/s12943-023-01843-6

Maffuid, K., & Cao, Y. (2023). Decoding the complexity of immune–cancer cell interactions: Empowering the future of cancer immunotherapy. Cancers, 15(16), 4188. https://doi.org/10.3390/cancers15164188

Moghaddam, M. Z., Ansariniya, H., Seifati, S. M., Zare, F., & Fesahat, F. (2022). Immunopathogenesis of endometriosis: An overview of the role of innate and adaptive immune cells and their mediators. American Journal of Reproductive Immunology, 87(5), 1-15. https://doi.org/10.1111/aji.13537

Rőszer, T. (2015). Understanding the mysterious M2 macrophage through activation markers and effector mechanisms. Mediators Inflamm. https://doi.org/10.1155/2015/816460.

Serrasqueiro, F., Barbosa, A. I., Lima, S. A. C., & Reis, S. (2023). Targeting the mannose receptor with functionalized fucoidan/chitosan nanoparticles triggers the classical activation of macrophages. International Journal of Molecular Sciences, 24(12), 9908. https://doi.org/10.3390/ijms24129908

Shi, L., & Gu, H. (2021). Emerging nanoparticle strategies for modulating tumor-associated macrophage polarization. Biomolecules (2218-273X), 11(12), 1912. https://doi.org/10.3390/biom11121912

Thol, K., Pawlik, P., & McGranahan, N. (2022). Therapy sculpts the complex interplay between cancer and the immune system during tumour evolution. Genome Medicine, 14(1), 1-16. https://doi.org/10.1186/s13073-022-01138-3

Wang, D., & Wei, H. (2023). Natural killer cells in tumor immunotherapy. Cancer Biology & Medicine, 20(8), 539-544.

Wang, H.-J., Jiang, Y.-P., Zhang, J.-Y., Tang, X.-Q., Lou, J.-S., & Huang, X.-Y. (2023). Roles of fascin in dendritic cells. Cancers, 15(14), 3691. https://doi.org/10.3390/cancers15143691

Published

05-31-2024

How to Cite

Kadali, A., Parajuli, D. P., Kethar, J., & Torremocha, V. (2024). The Polarization of Tumor-Associated Macrophages as an Effective Therapeutic Strategy: A Comprehensive Analysis. Journal of Student Research, 13(2). https://doi.org/10.47611/jsrhs.v13i2.6817

Issue

Section

HS Research Articles