A Comprehensive Analysis of the Habitability of TRAPPIST-1 Exoplanets

Authors

  • Vyshakh Thejaswi WWP High School South

DOI:

https://doi.org/10.47611/jsrhs.v13i2.6815

Keywords:

Habitability, Exoplanet, Star, Radiation, Atmosphere, Habitable Zone

Abstract

TRAPPIST-1 is the most studied star system other than our Solar System. The announcement of the discovery of the system fostered international attention for its potential to harbor extraterrestrial life, and maybe one day even human life. This paper aims to evaluate the validity of this excitement by interpreting and compiling all available information regarding factors that could potentially affect habitability. To do this, we look at all data regarding the Habitable Zone and Water Presence, Tidal Forces, and Atmospheric Composition resulting in Extreme UV (EUV) Flux. Specifically, we compare Transmission spectra of the four planets in the habitable zone with synthetic, potentially habitable atmospheres, we compare composition and density of the planets with Earth and other density models to determine water composition, and we consider both high and low stellar activity to determine EUV flux in an anoxic, Earth-like and very thin atmosphere. This paper shows that on net, due to the lack of a thick atmosphere, various issues arise that lead to the conclusion that the planetary system is uninhabitable for even the most resistant terrestrial organisms. This set of considerations could be used in studying other planetary systems and evaluating their habitability as well.

Downloads

Download data is not yet available.

References or Bibliography

Gillon, M., Triaud, A. H. M. J., Demory, B., Jehin, E., Agol, E., Deck, K. M., Lederer, S. M., De Wit, J., Burdanov, A., Ingalls, J. G., Bolmont, É., Leconte, J., Raymond, S. N., Selsis, F., Turbet, M., Barkaoui, K., Burgasser, A. J., Burleigh, M. R., Carey, S., . . . Queloz, D. (2017). Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1. Nature, 542(7642), 456–460. https://doi.org/10.1038/nature21360

Grimm, S. L., Demory, B., Gillon, M., Dorn, C., Agol, E., Burdanov, A., Delrez, L., Sestovic, M., Triaud, A. H. M. J., Turbet, M., Bolmont, É., Caldas, A., De Wit, J., Jehin, E., Leconte, J., Raymond, S. N., Van Grootel, V., Burgasser, A. J., Carey, S., . . . Queloz, D. (2018). The nature of the TRAPPIST-1 exoplanets. Astronomy and Astrophysics, 613, A68. https://doi.org/10.1051/0004-6361/201732233

Kral, Q., Wyatt, M. C., Triaud, A. H. M. J., Marino, S., Thébault, P., & Shorttle, O. (2018). Cometary impactors on the TRAPPIST-1 planets can destroy all planetary atmospheres and rebuild secondary atmospheres on planets f, g, and h. Monthly Notices of the Royal Astronomical Society, 479(2), 2649–2672. https://doi.org/10.1093/mnras/sty1677

Childs, A. C., Martin, R. G., & Livio, M. (2022). Life on exoplanets in the habitable zone of M dwarfs? The Astrophysical Journal Letters, 937(2), L41. https://doi.org/10.3847/2041-8213/ac9052

Marino, S., Wyatt, M. C., Kennedy, G. M., Kama, M., Matrà, L., Triaud, A. H. M. J., & Henning, T. (2020). Searching for a dusty cometary belt around TRAPPIST-1 with ALMA. Monthly Notices of the Royal Astronomical Society, 492(4), 6067–6073. https://doi.org/10.1093/mnras/staa266

Agol, E., Dorn, C., Grimm, S. L., Turbet, M., Ducrot, E., Delrez, L., Gillon, M., Demory, B., Burdanov, A., Barkaoui, K., Benkhaldoun, Z., Bolmont, E., Burgasser, A., Carey, S., Julien, D. W., Fabrycky, D., Foreman-Mackey, D., Haldemann, J., Hernandez, D. M., . . . Valerie, V. G. (2020, October 2). Refining the transit timing and photometric analysis of TRAPPIST-1: Masses, radii, densities, dynamics, and ephemerides. arXiv.org. https://arxiv.org/abs/2010.01074

Barr, A. C., Dobos, V., & Kiss, L. L. (2018). Interior structures and tidal heating in the TRAPPIST-1 planets. Astronomy and Astrophysics, 613, A37. https://doi.org/10.1051/0004-6361/201731992

[email protected]. (n.d.). Habitable zone. ESA/Hubble | ESA/Hubble. https://esahubble.org/wordbank/habitable-zone/#:~:text=The%20Habitable%20Zone%20is%20the,liquid%20water%20on%20its%20surface

Catalog page for PIA21424. (n.d.). https://photojournal.jpl.nasa.gov/catalog/PIA21424

Bolmont, É., Selsis, F., Raymond, S. N., Leconte, J., Hersant, F., Maurin, A. S., & Péricaud, J. (2013). Tidal dissipation and eccentricity pumping: Implications for the depth of the secondary eclipse of 55 Cancri e. Astronomy and Astrophysics, 556, A17. https://doi.org/10.1051/0004-6361/201220837

Segatz, M., Spohn, T., Ross, M. N., & Schubert, G. (1988). Tidal dissipation, surface heat flow, and figure of viscoelastic models of Io. Icarus, 75(2), 187–206. https://doi.org/10.1016/0019-1035(88)90001-2

Papaloizou, J. C. B., Szuszkiewicz, E., & Terquem, C. (2017). The TRAPPIST-1 system: orbital evolution, tidal dissipation, formation and habitability. Monthly Notices of the Royal Astronomical Society, 476(4), 5032–5056. https://doi.org/10.1093/mnras/stx2980

Goldreich, P., & Soter, S. (1966). Q in the solar system. Icarus, 5(1–6), 375–389. https://doi.org/10.1016/0019-1035(66)90051-0

Davies, A. G., Perry, J., Williams, D. A., & Nelson, D. M. (2023). Io’s polar volcanic thermal emission indicative of magma ocean and shallow tidal heating models. Nature Astronomy. https://doi.org/10.1038/s41550-023-02123-5

Boldog, Á., Dobos, V., Kiss, L. L., Van Der Perk, M., & Barr, C. (2023). Water content of rocky exoplanets in the habitable zone. Astronomy and Astrophysics. https://doi.org/10.1051/0004-6361/202346988

Vecchio, A., Primavera, L., Lepreti, F., Alberti, T., & Carbone, V. (2020). Effect of vegetation on the temperatures of TRAPPIST-1 planets. The Astrophysical Journal, 891(1), 24. https://doi.org/10.3847/1538-4357/ab6d75

Sing, D. K., Fortney, J. J., Nikolov, N., Wakeford, H. R., Kataria, T., Evans, T. M., Aigrain, S., Ballester, G. E., Burrows, A., Deming, D., Désert, J. M., Gibson, N. P., Henry, G. W., Huitson, C. M., Knutson, H. A., Étangs, A. L. D., Pont, F., Showman, A. P., Vidal‐Madjar, A., . . . Wilson, P. (2015). A continuum from clear to cloudy hot-Jupiter exoplanets without primordial water depletion. Nature, 529(7584), 59–62. https://doi.org/10.1038/nature16068

De Wit, J., Wakeford, H. R., Lewis, N. K., Delrez, L., Gillon, M., Selsis, F., Leconte, J., Demory, B., Belmont, E., Bourrier, V., Burgasser, A. J., Grimm, S. L., Jehin, E., Lederer, S. M., Owen, J. E., Stamenković, V., & Triaud, A. H. M. J. (2018). Atmospheric reconnaissance of the habitable-zone Earth-sized planets orbiting TRAPPIST-1. Nature Astronomy, 2(3), 214–219. https://doi.org/10.1038/s41550-017-0374-z

Dong, C., Jin, M., Lingam, M., Airapetian, V., Ma, Y., & Van Der Holst, B. (2017b). Atmospheric escape from the TRAPPIST-1 planets and implications for habitability. Proceedings of the National Academy of Sciences of the United States of America, 115(2), 260–265. https://doi.org/10.1073/pnas.1708010115

Garraffo, C., Drake, J. J., & Cohen, O. (2016). THE SPACE WEATHER OF PROXIMA CENTAURI b. The Astrophysical Journal Letters, 833(1), L4. https://doi.org/10.3847/2041-8205/833/1/l4

Airapetian, V. S., Glocer, A., Khazanov, G. V., Loyd, R. O. P., Sojka, J. J., Danchi, W. C., & Liemohn, M. W. (2017). How hospitable are space weather affected habitable zones? The role of ion escape. The Astrophysical Journal Letters, 836(1), L3. https://doi.org/10.3847/2041-8213/836/1/l3

Bourrier, V., Ehrenreich, D., Wheatley, P. J., Bolmont, É., Gillon, M., De Wit, J., Burgasser, A. J., Jehin, E., Queloz, D., & Triaud, A. H. M. J. (2017). Reconnaissance of the TRAPPIST-1 exoplanet system in the Lyman-αline. Astronomy and Astrophysics, 599, L3. https://doi.org/10.1051/0004-6361/201630238

O’Malley-James, J. T., & Kaltenegger, L. (2017). UV surface habitability of the TRAPPIST-1 system. Monthly Notices of the Royal Astronomical Society: Letters, 469(1), L26–L30. https://doi.org/10.1093/mnrasl/slx047

Vida, K., Kővári, Z., Pál, A., Oláh, K., & Kriskovics, L. (2017). Frequent flaring in the TRAPPIST-1 System—Unsuited for life? The Astrophysical Journal, 841(2), 124. https://doi.org/10.3847/1538-4357/aa6f05

Burgasser, A. J., & Mamajek, E. E. (2017). On the Age of the TRAPPIST-1 System. The Astrophysical Journal, 845(2), 110. https://doi.org/10.3847/1538-4357/aa7fea

Turbet, Martin; Bolmont, Emeline; Bourrier, Vincent; Demory, Brice-Olivier; Leconte, Jérémy; Owen, James; Wolf, Eric T. (August 2020). "A Review of Possible Planetary Atmospheres in the TRAPPIST-1 System". Space Science Reviews. 216 (5): 100. arXiv:2007.03334. Bibcode:2020SSRv..216..100T. doi:10.1007/s11214-020-00719-1. ISSN 1572-9672. PMC 7378127. PMID 32764836

Horton, L., Brady, J., Kincaid, C. M., Torres, A. E., & Lim, H. W. (2023). The effects of infrared radiation on the human skin. Photodermatology, Photoimmunology and Photomedicine, 39(6), 549–555. https://doi.org/10.1111/phpp.12899

Published

05-31-2024

How to Cite

Thejaswi, V. (2024). A Comprehensive Analysis of the Habitability of TRAPPIST-1 Exoplanets. Journal of Student Research, 13(2). https://doi.org/10.47611/jsrhs.v13i2.6815

Issue

Section

HS Review Articles