Applying Artificial Intelligence in Diagnosis and Treatment of Autism Spectrum Disorder in Children
DOI:
https://doi.org/10.47611/jsrhs.v13i2.6803Keywords:
autism, ASD, autism spectrum disorder, machine learning, artificial intelligence, deep learning, autism treatment, autism intervention, autism diagnosisAbstract
Autism Spectrum Disorder (ASD) is a disorder of increasing prevalence that affects individuals socially, emotionally, and academically. The increased prevalence and restricted access to diagnosis and treatment suggest more efficient and widely accessible services are necessary. Many individuals with ASD do not receive proper attention due to various reasons, including costs, long wait lists, and long processes. Recent developments in artificial intelligence and machine learning are believed to be able to aid this accessibility issue. Research has shown progress in using MRI and EEG datasets to develop machine learning models in diagnosing ASD and potentially finding biomarkers using supervised and unsupervised ML techniques. AI algorithms analyzing body language and physical behaviors could potentially be used to assess ASD characteristics despite the heterogeneity of the disorder. The adaptivity of artificial intelligence is believed to have the potential to create supportive software for students with ASD to support learning, emotional regulation, and development of social communication skills and increased adaptability. More evidence is required to prove the effectiveness of these applications, but many studies show a lot of promise for children with ASD.
Downloads
References or Bibliography
Hirota, T., & King, B. H. (2023). Autism Spectrum Disorder: A Review. JAMA, 329(2), 157–168. https://doi.org/10.1001/jama.2022.23661
Maenner MJ, Warren Z, Williams AR, et al. Prevalence and Characteristics of Autism Spectrum Disorder Among Children Aged 8 Years — Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2020. MMWR Surveill Summ 2023;72(No. SS-2):1–14. DOI: http://dx.doi.org/10.15585/mmwr.ss7202a1.
LaGasse A. B. (2017). Social outcomes in children with autism spectrum disorder: a review of music therapy outcomes. Patient related outcome measures, 8, 23–32. https://doi.org/10.2147/PROM.S106267
Al-Beltagi, Mohammed. “Autism medical comorbidities.” World journal of clinical pediatrics vol. 10,3 15-28. 9 May. 2021, doi:10.5409/wjcp.v10.i3.15
Buescher, A. V., Cidav, Z., Knapp, M., & Mandell, D. S. (2014). Costs of autism spectrum disorders in the United Kingdom and the United States. JAMA pediatrics, 168(8), 721–728. https://doi.org/10.1001/jamapediatrics.2014.210
American Psychiatric Association. (2022). Diagnostic and statistical manual of mental disorders (5th ed., text rev.). https://doi.org/10.1176/appi.books.9780890425787
Zuvekas, S. H., Grosse, S. D., Lavelle, T. A., Maenner, M. J., Dietz, P., & Ji, X. (2021). Healthcare Costs of Pediatric Autism Spectrum Disorder in the United States, 2003-2015. Journal of autism and developmental disorders, 51(8), 2950–2958. https://doi.org/10.1007/s10803-020-04704-z
Hus, Y., & Segal, O. (2021). Challenges Surrounding the Diagnosis of Autism in Children. Neuropsychiatric disease and treatment, 17, 3509–3529. https://doi.org/10.2147/NDT.S282569
Jadav, N., & Bal, V. H. (2022). Associations between co-occurring conditions and age of autism diagnosis: Implications for mental health training and adult autism research. Autism Research, 15(11), 2112–2125. https://doi.org/10.1002/aur.2808
Gordon-Lipkin, E., Foster, J., & Peacock, G. (2016). Whittling Down the Wait Time: Exploring Models to Minimize the Delay from Initial Concern to Diagnosis and Treatment of Autism Spectrum Disorder. Pediatric clinics of North America, 63(5), 851–859. https://doi.org/10.1016/j.pcl.2016.06.007
Segato, A., Marzullo, A., Calimeri, F., & De Momi, E. (2020). Artificial intelligence for brain diseases: A systematic review. APL bioengineering, 4(4), 041503. https://doi.org/10.1063/5.0011697
Eslami, T., Almuqhim, F., Raiker, J. S., & Saeed, F. (2021). Machine Learning Methods for Diagnosing Autism Spectrum Disorder and Attention- Deficit/Hyperactivity Disorder Using Functional and Structural MRI: A Survey. Frontiers in neuroinformatics, 14, 575999. https://doi.org/10.3389/fninf.2020.575999
Zhang, Z., Li, G., Xu, Y., & Tang, X. (2021). Application of Artificial Intelligence in the MRI Classification Task of Human Brain Neurological and Psychiatric Diseases: A Scoping Review. Diagnostics (Basel, Switzerland), 11(8), 1402. https://doi.org/10.3390/diagnostics11081402
Dean, J. (2022). A Golden Decade of Deep Learning: Computing Systems & Applications. Daedalus, 151(2), 58–74. https://www.jstor.org/stable/48662026
Dekhil, O., Ali, M., El-Nakieb, Y., Shalaby, A., Soliman, A., Switala, A., Mahmoud, A., Ghazal, M., Hajjdiab, H., Casanova, M. F., Elmaghraby, A., Keynton, R., El-Baz, A., & Barnes, G. (2019). A Personalized Autism Diagnosis CAD System Using a Fusion of Structural MRI and Resting-State Functional MRI Data. Frontiers in psychiatry, 10, 392. https://doi.org/10.3389/fpsyt.2019.00392
Ha, S., Sohn, I. J., Kim, N., Sim, H. J., & Cheon, K. A. (2015). Characteristics of Brains in Autism Spectrum Disorder: Structure, Function and Connectivity across the Lifespan. Experimental neurobiology, 24(4), 273–284. https://doi.org/10.5607/en.2015.24.4.273
Ecker, C., Marquand, A., Mourão-Miranda, J., Johnston, P., Daly, E. M., Brammer, M. J., Maltezos, S., Murphy, C. M., Robertson, D., Williams, S. C., & Murphy, D. G. (2010). Describing the brain in autism in five dimensions--magnetic resonance imaging-assisted diagnosis of autism spectrum disorder using a multiparameter classification approach. The Journal of neuroscience : the official journal of the Society for Neuroscience, 30(32), 10612–10623. https://doi.org/10.1523/JNEUROSCI.5413-09.2010
Breiman, L. Random Forests. Machine Learning 45, 5–32 (2001). https://doi.org/10.1023/A:1010933404324
Parikh MN, Li H and He L (2019) Enhancing Diagnosis of Autism With Optimized Machine Learning Models and Personal Characteristic Data. Front. Comput. Neurosci. 13:9. doi: 10.3389/fncom.2019.00009
Bahathiq, R. A., Banjar, H., Bamaga, A. K., & Jarraya, S. K. (2022). Machine learning for autism spectrum disorder diagnosis using structural magnetic resonance imaging: Promising but challenging. Frontiers in neuroinformatics, 16, 949926. https://doi.org/10.3389/fninf.2022.949926
Liu, M., Li, B., & Hu, D. (2021). Autism Spectrum Disorder Studies Using fMRI Data and Machine Learning: A Review. Frontiers in neuroscience, 15, 697870. https://doi.org/10.3389/fnins.2021.697870
Zhao, F., Zhang, H., Rekik, I., An, Z., & Shen, D. (2018). Diagnosis of Autism Spectrum Disorders Using Multi-Level High-Order Functional Networks Derived From Resting-State Functional MRI. Frontiers in human neuroscience, 12, 184. https://doi.org/10.3389/fnhum.2018.00184
Glomb, K., Cabral, J., Cattani, A., Mazzoni, A., Raj, A., & Franceschiello, B. (2022). Computational Models in Electroencephalography. Brain topography, 35(1), 142–161. https://doi.org/10.1007/s10548-021-00828-2
Tawhid, M. N. A., Siuly, S., Wang, H., Whittaker, F., Wang, K., & Zhang, Y. (2021). A spectrogram image based intelligent technique for automatic detection of autism spectrum disorder from EEG. PloS one, 16(6), e0253094. https://doi.org/10.1371/journal.pone.0253094
Bosl, W.J., Tager-Flusberg, H. & Nelson, C.A. EEG Analytics for Early Detection of Autism Spectrum Disorder: A data-driven approach. Sci Rep 8, 6828 (2018). https://doi.org/10.1038/s41598-018-24318-x
Neuhaus, E., Lowry, S. J., Santhosh, M., Kresse, A., Edwards, L. A., Keller, J., Libsack, E. J., Kang, V. Y., Naples, A., Jack, A., Jeste, S., McPartland, J. C., Aylward, E., Bernier, R., Bookheimer, S., Dapretto, M., Van Horn, J. D., Pelphrey, K., Webb, S. J., & The ACE GENDAAR Network (2021). Resting state EEG in youth with ASD: age, sex, and relation to phenotype. Journal of neurodevelopmental disorders, 13(1), 33. https://doi.org/10.1186/s11689-021-09390-1
Kojovic, N., Natraj, S., Mohanty, S.P. et al. Using 2D video-based pose estimation for automated prediction of autism spectrum disorders in young children. Sci Rep 11, 15069 (2021). https://doi.org/10.1038/s41598-021-94378-z
Landowska, A., Karpus, A., Zawadzka, T., Robins, B., Erol Barkana, D., Kose, H., Zorcec, T., & Cummins, N. (2022). Automatic Emotion Recognition in Children with Autism: A Systematic Literature Review. Sensors (Basel, Switzerland), 22(4), 1649. https://doi.org/10.3390/s22041649
Chu, H.-C., Tsai, W. W.-J., Liao, M.-J., Chen, Y.-M., & Chen, J.-Y. (2020). Supporting E-Learning with Emotion Regulation for Students with Autism Spectrum Disorder. Educational Technology & Society, 23(4), 124–146. https://www.jstor.org/stable/26981748
Totsika, V., Hastings, R. P., Emerson, E., Berridge, D. M., & Lancaster, G. A. (2011). Behavior problems at 5 years of age and maternal mental health in autism and intellectual disability. Journal of abnormal child psychology, 39(8), 1137–1147. https://doi.org/10.1007/s10802-011-9534-2
Gross, J. J. (2015). The Extended Process Model of Emotion Regulation: Elaborations, Applications, and Future Directions. Psychological Inquiry, 26(1), 130–137. http://www.jstor.org/stable/43865719
Zhang, S., Wang, S., Liu, R., Dong, H., Zhang, X., & Tai, X. (2022). A bibliometric analysis of research trends of artificial intelligence in the treatment of autistic spectrum disorders. Frontiers in psychiatry, 13, 967074. https://doi.org/10.3389/fpsyt.2022.967074
Berenguer, C., Baixauli, I., Gómez, S., Andrés, M. E. P., & De Stasio, S. (2020). Exploring the Impact of Augmented Reality in Children and Adolescents with Autism Spectrum Disorder: A Systematic Review. International journal of environmental research and public health, 17(17), 6143. https://doi.org/10.3390/ijerph17176143
Published
How to Cite
Issue
Section
Copyright (c) 2024 Kelis Nguyen; Yongmei Huang
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.