Applying Artificial Intelligence in Diagnosis and Treatment of Autism Spectrum Disorder in Children

Authors

  • Kelis Nguyen Columbia University
  • Yongmei Huang Columbia University

DOI:

https://doi.org/10.47611/jsrhs.v13i2.6803

Keywords:

autism, ASD, autism spectrum disorder, machine learning, artificial intelligence, deep learning, autism treatment, autism intervention, autism diagnosis

Abstract

Autism Spectrum Disorder (ASD) is a disorder of increasing prevalence that affects individuals socially, emotionally, and academically. The increased prevalence and restricted access to diagnosis and treatment suggest more efficient and widely accessible services are necessary. Many individuals with ASD do not receive proper attention due to various reasons, including costs, long wait lists, and long processes. Recent developments in artificial intelligence and machine learning are believed to be able to aid this accessibility issue. Research has shown progress in using MRI and EEG datasets to develop machine learning models in diagnosing ASD and potentially finding biomarkers using supervised and unsupervised ML techniques. AI algorithms analyzing body language and physical behaviors could potentially be used to assess ASD characteristics despite the heterogeneity of the disorder. The adaptivity of artificial intelligence is believed to have the potential to create supportive software for students with ASD to support learning, emotional regulation, and development of social communication skills and increased adaptability. More evidence is required to prove the effectiveness of these applications, but many studies show a lot of promise for children with ASD.

Downloads

Download data is not yet available.

References or Bibliography

Hirota, T., & King, B. H. (2023). Autism Spectrum Disorder: A Review. JAMA, 329(2), 157–168. https://doi.org/10.1001/jama.2022.23661

Maenner MJ, Warren Z, Williams AR, et al. Prevalence and Characteristics of Autism Spectrum Disorder Among Children Aged 8 Years — Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2020. MMWR Surveill Summ 2023;72(No. SS-2):1–14. DOI: http://dx.doi.org/10.15585/mmwr.ss7202a1.

LaGasse A. B. (2017). Social outcomes in children with autism spectrum disorder: a review of music therapy outcomes. Patient related outcome measures, 8, 23–32. https://doi.org/10.2147/PROM.S106267

Al-Beltagi, Mohammed. “Autism medical comorbidities.” World journal of clinical pediatrics vol. 10,3 15-28. 9 May. 2021, doi:10.5409/wjcp.v10.i3.15

Buescher, A. V., Cidav, Z., Knapp, M., & Mandell, D. S. (2014). Costs of autism spectrum disorders in the United Kingdom and the United States. JAMA pediatrics, 168(8), 721–728. https://doi.org/10.1001/jamapediatrics.2014.210

American Psychiatric Association. (2022). Diagnostic and statistical manual of mental disorders (5th ed., text rev.). https://doi.org/10.1176/appi.books.9780890425787

Zuvekas, S. H., Grosse, S. D., Lavelle, T. A., Maenner, M. J., Dietz, P., & Ji, X. (2021). Healthcare Costs of Pediatric Autism Spectrum Disorder in the United States, 2003-2015. Journal of autism and developmental disorders, 51(8), 2950–2958. https://doi.org/10.1007/s10803-020-04704-z

Hus, Y., & Segal, O. (2021). Challenges Surrounding the Diagnosis of Autism in Children. Neuropsychiatric disease and treatment, 17, 3509–3529. https://doi.org/10.2147/NDT.S282569

Jadav, N., & Bal, V. H. (2022). Associations between co-occurring conditions and age of autism diagnosis: Implications for mental health training and adult autism research. Autism Research, 15(11), 2112–2125. https://doi.org/10.1002/aur.2808

Gordon-Lipkin, E., Foster, J., & Peacock, G. (2016). Whittling Down the Wait Time: Exploring Models to Minimize the Delay from Initial Concern to Diagnosis and Treatment of Autism Spectrum Disorder. Pediatric clinics of North America, 63(5), 851–859. https://doi.org/10.1016/j.pcl.2016.06.007

Segato, A., Marzullo, A., Calimeri, F., & De Momi, E. (2020). Artificial intelligence for brain diseases: A systematic review. APL bioengineering, 4(4), 041503. https://doi.org/10.1063/5.0011697

Eslami, T., Almuqhim, F., Raiker, J. S., & Saeed, F. (2021). Machine Learning Methods for Diagnosing Autism Spectrum Disorder and Attention- Deficit/Hyperactivity Disorder Using Functional and Structural MRI: A Survey. Frontiers in neuroinformatics, 14, 575999. https://doi.org/10.3389/fninf.2020.575999

Zhang, Z., Li, G., Xu, Y., & Tang, X. (2021). Application of Artificial Intelligence in the MRI Classification Task of Human Brain Neurological and Psychiatric Diseases: A Scoping Review. Diagnostics (Basel, Switzerland), 11(8), 1402. https://doi.org/10.3390/diagnostics11081402

Dean, J. (2022). A Golden Decade of Deep Learning: Computing Systems & Applications. Daedalus, 151(2), 58–74. https://www.jstor.org/stable/48662026

Dekhil, O., Ali, M., El-Nakieb, Y., Shalaby, A., Soliman, A., Switala, A., Mahmoud, A., Ghazal, M., Hajjdiab, H., Casanova, M. F., Elmaghraby, A., Keynton, R., El-Baz, A., & Barnes, G. (2019). A Personalized Autism Diagnosis CAD System Using a Fusion of Structural MRI and Resting-State Functional MRI Data. Frontiers in psychiatry, 10, 392. https://doi.org/10.3389/fpsyt.2019.00392

Ha, S., Sohn, I. J., Kim, N., Sim, H. J., & Cheon, K. A. (2015). Characteristics of Brains in Autism Spectrum Disorder: Structure, Function and Connectivity across the Lifespan. Experimental neurobiology, 24(4), 273–284. https://doi.org/10.5607/en.2015.24.4.273

Ecker, C., Marquand, A., Mourão-Miranda, J., Johnston, P., Daly, E. M., Brammer, M. J., Maltezos, S., Murphy, C. M., Robertson, D., Williams, S. C., & Murphy, D. G. (2010). Describing the brain in autism in five dimensions--magnetic resonance imaging-assisted diagnosis of autism spectrum disorder using a multiparameter classification approach. The Journal of neuroscience : the official journal of the Society for Neuroscience, 30(32), 10612–10623. https://doi.org/10.1523/JNEUROSCI.5413-09.2010

Breiman, L. Random Forests. Machine Learning 45, 5–32 (2001). https://doi.org/10.1023/A:1010933404324

Parikh MN, Li H and He L (2019) Enhancing Diagnosis of Autism With Optimized Machine Learning Models and Personal Characteristic Data. Front. Comput. Neurosci. 13:9. doi: 10.3389/fncom.2019.00009

Bahathiq, R. A., Banjar, H., Bamaga, A. K., & Jarraya, S. K. (2022). Machine learning for autism spectrum disorder diagnosis using structural magnetic resonance imaging: Promising but challenging. Frontiers in neuroinformatics, 16, 949926. https://doi.org/10.3389/fninf.2022.949926

Liu, M., Li, B., & Hu, D. (2021). Autism Spectrum Disorder Studies Using fMRI Data and Machine Learning: A Review. Frontiers in neuroscience, 15, 697870. https://doi.org/10.3389/fnins.2021.697870

Zhao, F., Zhang, H., Rekik, I., An, Z., & Shen, D. (2018). Diagnosis of Autism Spectrum Disorders Using Multi-Level High-Order Functional Networks Derived From Resting-State Functional MRI. Frontiers in human neuroscience, 12, 184. https://doi.org/10.3389/fnhum.2018.00184

Glomb, K., Cabral, J., Cattani, A., Mazzoni, A., Raj, A., & Franceschiello, B. (2022). Computational Models in Electroencephalography. Brain topography, 35(1), 142–161. https://doi.org/10.1007/s10548-021-00828-2

Tawhid, M. N. A., Siuly, S., Wang, H., Whittaker, F., Wang, K., & Zhang, Y. (2021). A spectrogram image based intelligent technique for automatic detection of autism spectrum disorder from EEG. PloS one, 16(6), e0253094. https://doi.org/10.1371/journal.pone.0253094

Bosl, W.J., Tager-Flusberg, H. & Nelson, C.A. EEG Analytics for Early Detection of Autism Spectrum Disorder: A data-driven approach. Sci Rep 8, 6828 (2018). https://doi.org/10.1038/s41598-018-24318-x

Neuhaus, E., Lowry, S. J., Santhosh, M., Kresse, A., Edwards, L. A., Keller, J., Libsack, E. J., Kang, V. Y., Naples, A., Jack, A., Jeste, S., McPartland, J. C., Aylward, E., Bernier, R., Bookheimer, S., Dapretto, M., Van Horn, J. D., Pelphrey, K., Webb, S. J., & The ACE GENDAAR Network (2021). Resting state EEG in youth with ASD: age, sex, and relation to phenotype. Journal of neurodevelopmental disorders, 13(1), 33. https://doi.org/10.1186/s11689-021-09390-1

Kojovic, N., Natraj, S., Mohanty, S.P. et al. Using 2D video-based pose estimation for automated prediction of autism spectrum disorders in young children. Sci Rep 11, 15069 (2021). https://doi.org/10.1038/s41598-021-94378-z

Landowska, A., Karpus, A., Zawadzka, T., Robins, B., Erol Barkana, D., Kose, H., Zorcec, T., & Cummins, N. (2022). Automatic Emotion Recognition in Children with Autism: A Systematic Literature Review. Sensors (Basel, Switzerland), 22(4), 1649. https://doi.org/10.3390/s22041649

Chu, H.-C., Tsai, W. W.-J., Liao, M.-J., Chen, Y.-M., & Chen, J.-Y. (2020). Supporting E-Learning with Emotion Regulation for Students with Autism Spectrum Disorder. Educational Technology & Society, 23(4), 124–146. https://www.jstor.org/stable/26981748

Totsika, V., Hastings, R. P., Emerson, E., Berridge, D. M., & Lancaster, G. A. (2011). Behavior problems at 5 years of age and maternal mental health in autism and intellectual disability. Journal of abnormal child psychology, 39(8), 1137–1147. https://doi.org/10.1007/s10802-011-9534-2

Gross, J. J. (2015). The Extended Process Model of Emotion Regulation: Elaborations, Applications, and Future Directions. Psychological Inquiry, 26(1), 130–137. http://www.jstor.org/stable/43865719

Zhang, S., Wang, S., Liu, R., Dong, H., Zhang, X., & Tai, X. (2022). A bibliometric analysis of research trends of artificial intelligence in the treatment of autistic spectrum disorders. Frontiers in psychiatry, 13, 967074. https://doi.org/10.3389/fpsyt.2022.967074

Berenguer, C., Baixauli, I., Gómez, S., Andrés, M. E. P., & De Stasio, S. (2020). Exploring the Impact of Augmented Reality in Children and Adolescents with Autism Spectrum Disorder: A Systematic Review. International journal of environmental research and public health, 17(17), 6143. https://doi.org/10.3390/ijerph17176143

Published

05-31-2024

How to Cite

Nguyen, K., & Huang, Y. (2024). Applying Artificial Intelligence in Diagnosis and Treatment of Autism Spectrum Disorder in Children. Journal of Student Research, 13(2). https://doi.org/10.47611/jsrhs.v13i2.6803

Issue

Section

HS Review Articles