A MULTI-OMICS REVIEW OF GATA-3

Authors

  • Yashas Revanakara Irvington High School

DOI:

https://doi.org/10.47611/jsrhs.v13i2.6796

Keywords:

Breast cancer, GATA3, Mult-Omic, oncogene, tumor suppressor gene

Abstract

Breast cancer is a prevalent mutation-caused disease that affects millions of people worldwide. One such gene that is related to causing the cancer is GATA3. This gene is a regulator of t-cell development and is also involved with causing luminal breast cancer when altered. The type of gene which GATA3 was never clear, displaying both properties of an oncogene and a tumor suppressor gene. The TCGA dataset provided by the Cancer Genome Atlas program provides relevant data through the numerous patients who have submitted data in the program. GATA3 has most of its mutations as truncation in both alleles with the X308_splice mutation. This recessive property suggests it is a tumor suppressor gene. Other mutations like the M293, a missense mutation, aren’t well researched but provide signs of being oncogenic. GATA# also initially increases survivability when highly altered proposing it to be a tumor suppressor gene. The role of GATA3 is still not well defined but shows most properties of a tumor suppressor gene.

 

Downloads

Download data is not yet available.

References or Bibliography

Centers for Disease Control and Prevention. (2023, July 25). Basic information about breast cancer. Centers for Disease Control and Prevention. https://www.cdc.gov/cancer/breast/basic_info/index.htm#:~:text=Each%20year%20in%20the%20United,What%20Is%20Breast%20Cancer%3F

Common cancer sites - cancer stat facts. SEER. (n.d.). https://seer.cancer.gov/statfacts/html/common.html

Breast cancer - statpearls - NCBI bookshelf. (n.d.). https://www.ncbi.nlm.nih.gov/books/NBK482286/

Ductal carcinoma in situ (DCIS). Ductal Carcinoma in Situ (DCIS) | American Cancer Society. (n.d.). https://www.cancer.org/cancer/types/breast-cancer/about/types-of-breast-cancer/dcis.html

Depolo, J. (n.d.). Invasive Lobular Carcinoma. Invasive lobular carcinoma: What it is, diagnosis, and treatments. https://www.breastcancer.org/types/invasive-lobular-carcinoma

Penn Medicine. (n.d.). Pennmedicine.org. https://www.pennmedicine.org/cancer/types-of-cancer/breast-cancer/types-of-breast-cancer/invasive-lobular-carcinoma

Gene Cards . Gene Cards -Human Gene Databse. (n.d.). https://www.genecards.org/cgi-bin/carddisp.pl?gene=GATA3

Wan, Y. Y. (2014, June). GATA3: A master of many trades in immune regulation. Trends in immunology. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4045638/

Szklarczyk , D. (n.d.). The string database in 2023: Protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic acids research. https://pubmed.ncbi.nlm.nih.gov/36370105/

Liu, Y., Ma, H., & Yao, J. (2020). ERα, A Key Target for Cancer Therapy: A Review. OncoTargets and Therapy, Volume 13, 2183–2191. https://doi.org/10.2147/ott.s236532

Zbysław Sońdka, Nidhi Bindal Dhir, Carvalho-Silva, D., Jupe, S., Madhumita, McLaren, K., Starkey, M., Ward, S., Wilding, J. L., Ahmed, M., Argasinska, J., Beare, D., Chawla, M. L., Duke, S. O., Fasanella, I., Avirup Guha Neogi, Haller, S., Balázs Hetényi, Hodges, L. K., & Holmes, A. (2023). COSMIC: a curated database of somatic variants and clinical data for cancer. Nucleic Acids Research, 52(D1), D1210–D1217. https://doi.org/10.1093/nar/gkad986

Cerami, E., Gao, J., Dogrusoz, U., Gross, B. E., Sumer, S. O., Aksoy, B. A., Jacobsen, A., Byrne, C. J., Heuer, M. L., Larsson, E., Antipin, Y., Reva, B., Goldberg, A. P., Sander, C., & Schultz, N. (2012). The cBio Cancer Genomics Portal: An Open Platform for Exploring Multidimensional Cancer Genomics Data. Cancer Discovery, 2(5), 401–404. https://doi.org/10.1158/2159-8290.cd-12-0095

Karolchik, D., Hinrichs, A. S., & Kent, W. J. (2009). The UCSC Genome Browser. Current Protocols in Bioinformatics, 28(1). https://doi.org/10.1002/0471250953.bi0104s28

Lee, B. T., Barber, G. P., Benet-Pagès, A., Casper, J., Clawson, H., Diekhans, M., Fischer, C., Gonzalez, J. N., Hinrichs, A., Lee, C., Muthuraman, P., Nassar, L., Nguy, B., Pereira, T., Perez, G., Raney, B., Rosenbloom, K., Schmelter, D., Speir, M., & Wick, B. (2021b). The UCSC Genome Browser database: 2022 update. Nucleic Acids Research, 50(D1), D1115–D1122. https://doi.org/10.1093/nar/gkab959

Uhlen, M., Fagerberg, L., Hallstrom, B. M., Lindskog, C., Oksvold, P., Mardinoglu, A., Sivertsson, A., Kampf, C., Sjostedt, E., Asplund, A., Olsson, I., Edlund, K., Lundberg, E., Navani, S., Szigyarto, C. A.-K. ., Odeberg, J., Djureinovic, D., Takanen, J. O., Hober, S., & Alm, T. (2015). Tissue-based map of the human proteome. Science, 347(6220), 1260419–1260419. https://doi.org/10.1126/science.1260419

Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, Haussler D. The human genome browser at UCSC. Genome Res. 2002 Jun;12(6):996-1006.

McCart Reed, A. E., Kutasovic, J. R., Nones, K., Saunus, J. M., Da Silva, L., Newell, F., Kazakoff, S., Melville, L., Jayanthan, J., Vargas, A. C., Reid, L. E., Beesley, J., Chen, X. Q., Patch, A.-M., Clouston, D., Porter, A., Evans, E., Pearson, J. V., Chenevix-Trench, G., & Cummings, M. C. (2018). Mixed ductal-lobular carcinomas: evidence for progression from ductal to lobular morphology. The Journal of Pathology, 244(4), 460–468. https://doi.org/10.1002/path.5040

Metaplastic Breast Cancer. (n.d.). MD Anderson Cancer Center. Retrieved January 23, 2024, from https://www.mdanderson.org/cancer-types/breast-cancer/metaplastic-breast-cancer.html#:~:text=Metaplastic%20breast%20cancer%20makes%20up

Mucinous Carcinoma: Definition, Pathology & Treatment. (n.d.). Cleveland Clinic. https://my.clevelandclinic.org/health/diseases/22975-mucinous-carcinoma

Jay, J. J., & Brouwer, C. (2016). Lollipops in the Clinic: Information Dense Mutation Plots for Precision Medicine. PLOS ONE, 11(8), e0160519. https://doi.org/10.1371/journal.pone.0160519

Suehnholz et al., Cancer Discovery 2023 and Chakravarty et al., JCO PO 2017

Liu, X., Bai, F., Wang, Y., Wang, C., Ho Lam Chan, Zheng, C., Fang, J., Zhu, W., & Pei, X.-H. (2023). Loss of function of GATA3 regulates FRA1 and c-FOS to activate EMT and promote mammary tumorigenesis and metastasis. Cell Death and Disease, 14(6). https://doi.org/10.1038/s41419-023-05888-9

QIAGEN. (n.d.). Somatic mutations and copy number changes in cancer: finding the right targets - QIAGEN. Www.qiagen.com. Retrieved January 23, 2024, from https://www.qiagen.com/us/spotlight-pages/newsletters-and-magazines/articles/reviews-online-copy-number-alteration/

Shortt, J., & Johnstone, R. W. (2012). Oncogenes in Cell Survival and Cell Death. Cold Spring Harbor Perspectives in Biology, 4(12), a009829–a009829. https://doi.org/10.1101/cshperspect.a009829

Yu, W., Huang, W., Yang, Y., Qiu, R., Zeng, Y., Hou, Y., Sun, G., Shi, H., Leng, S., Feng, D., Chen, Y., Wang, S., Teng, X., Yu, H., & Wang, Y. (2019). GATA3 recruits UTX for gene transcriptional activation to suppress metastasis of breast cancer. Cell Death & Disease, 10(11), 1–16. https://doi.org/10.1038/s41419-019-2062-7

Brenner, S., & Miller, J. (2002). Encyclopedia of genetics / 3. M - R. Acad. Press.

Published

05-31-2024

How to Cite

Revanakara, Y. (2024). A MULTI-OMICS REVIEW OF GATA-3. Journal of Student Research, 13(2). https://doi.org/10.47611/jsrhs.v13i2.6796

Issue

Section

HS Research Articles