Would Artificial Intelligence Methods Improve Early Diagnosis and Progress of Ovarian Cancer?

Authors

  • Connor Yau Stuyvesant High School
  • Yongmei Huang

DOI:

https://doi.org/10.47611/jsrhs.v13i2.6793

Keywords:

Cancer, Ovarian Cancer, Artificial Intelligence, Machine Learning

Abstract

Ovarian cancer is one of the most common cancers in women, characterized by advanced-stage diagnosis, poor prognosis, and high mortality rate. The predominant screening methods rely on ultrasound images and carbohydrate antigen 125, which has limitations such as a lack of specificity. More insight is needed to understand the etiology of ovarian cancer. Machine learning offers a solution to some of these issues and can be applied in diagnosing and prognosing ovarian cancer. This review article collects information on how machine learning models can be trained on a variety of data types, such as biomarkers, clinical factors, and medical imaging, and how these models can be used to classify benign and malignant tumors, predict survival rates, and determine response to drugs and treatment. Overall, we found that machine learning methods have shown great potential in applications in ovarian cancer, but more research needs to be conducted to further advance machine learning technologies in clinical practices.

Downloads

Download data is not yet available.

References or Bibliography

Howlader N, Noone AM, Krapcho M, Miller D, Bishop K, Kosary CL, Yu M, Ruhl J, Tatalovich Z, Mariotto A, Lewis DR, Chen HS, Feuer EJ, Cronin KA (eds). SEER Cancer Statistics Review, 1975-2014, National Cancer Institute. Bethesda, MD, https://seer.cancer.gov/csr/1975_2014/, based on November 2016 SEER data submission, posted to the SEER web site, April 2017.

Siegel RL, Giaquinto AN, Jemal A. (2024). Cancer statistics. CA Cancer JClin. 8(3), 12‐49. https://doi.org/10.3322/caac.21820

Cancer Statistics Center. American Cancer Society. Updated 2024. Accessed February 28th, 2024. https://cancerstatisticscenter.cancer.org/

US Preventive Services Task Force, Grossman, D. C., Curry, S. J., Owens, D. K., Barry, M. J., Davidson, K. W., Doubeni, C. A., Epling, J. W., Jr, Kemper, A. R., Krist, A. H., Kurth, A. E., Landefeld, C. S., Mangione, C. M., Phipps, M. G., Silverstein, M., Simon, M. A., & Tseng, C. W. (2018). Screening for Ovarian Cancer: US Preventive Services Task Force Recommendation Statement. JAMA, 319(6), 588–594. https://doi.org/10.1001/jama.2017.21926

Jacobs, I. J., & Menon, U. (2004). Progress and challenges in screening for early detection of ovarian cancer. Molecular & cellular proteomics : MCP, 3(4), 355–366. https://doi.org/10.1074/mcp.R400006-MCP200

Köbel, M., & Kang, E. Y. (2022). The Evolution of Ovarian Carcinoma Subclassification. Cancers, 14(2), 416. https://doi.org/10.3390/cancers14020416

Herrington, C. S. (Ed.), & Editorial Board, WHO. C. O. T. (2020). WHO Classification of Tumours Female Genital Tumours. (5th ed.) International Agency for Research on Cancer.

Koshiyama, M., Matsumura, N., & Konishi, I. (2014). Recent concepts of ovarian carcinogenesis: type I and type II. BioMed research international, 2014, 934261. https://doi.org/10.1155/2014/934261

Koshiyama, M., Matsumura, N., & Konishi, I. (2017). Subtypes of Ovarian Cancer and Ovarian Cancer Screening. Diagnostics (Basel, Switzerland), 7(1), 12. https://doi.org/10.3390/diagnostics7010012

Jacobs, I. J., & Menon, U. (2004). Progress and challenges in screening for early detection of ovarian cancer. Molecular & cellular proteomics : MCP, 3(4), 355–366. https://doi.org/10.1074/mcp.R400006-MCP200

Lim, H. J., & Ledger, W. (2016). Targeted therapy in ovarian cancer. Women's health (London, England), 12(3), 363–378. https://doi.org/10.2217/whe.16.4

Cristea, M., Han, E., Salmon, L., & Morgan, R. J. (2010). Practical considerations in ovarian cancer chemotherapy. Therapeutic advances in medical oncology, 2(3), 175–187. https://doi.org/10.1177/1758834010361333

Rajkomar, A., Dean, J., & Kohane I (2019). Machine Learning in Medicine. The New England Journal of Medicine. https://doi.org/10.1056/NEJMra1814259

Lantz, B. (2015). Machine Learning with R: Expert techniques for predictive modeling to solve all your data analysis problems. Packt Publishing.

Syed, M., Syed, S., Sexton, K., Syeda, H. B., Garza, M., Zozus, M., Syed, F., Begum, S., Syed, A. U., Sanford, J., & Prior, F. (2021). Application of Machine Learning in Intensive Care Unit (ICU) Settings Using MIMIC Dataset: Systematic Review. Informatics (MDPI), 8(1), 16. https://doi.org/10.3390/informatics8010016

Li, B., Feridooni, T., Cuen-Ojeda, C. et al. (2022). Machine learning in vascular surgery: a systematic review and critical appraisal. npj Digit. Med, 5(7). https://doi.org/10.1038/s41746-021-00552-y

Torkamannia, A., Omidi, Y., Ferdousi, R. (2022), A review of machine learning approaches for drug synergy prediction in cancer, Briefings in Bioinformatics, bbac075, 23(3), https://doi.org/10.1093/bib/bbac075

Atallah, G. A., Abd Aziz, N. H., Teik, C. K., Shafiee, M. N., & Kampan, N. C. (2021). New Predictive Biomarkers for Ovarian Cancer. Diagnostics (Basel, Switzerland), 11(3), 465. https://doi.org/10.3390/diagnostics11030465

Charkhchi, P., Cybulski, C., Gronwald, J., Wong, F. O., Narod, S. A., & Akbari, M. R. (2020). CA125 and Ovarian Cancer: A Comprehensive Review. Cancers, 12(12), 3730. https://doi.org/10.3390/cancers12123730

van Haaften-Day, C., Shen, Y., Xu, F., Yu, Y., Berchuck, A., Havrilesky, L. J., de Bruijn, H. W., van der Zee, A. G., Bast, R. C., Jr, & Hacker, N. F. (2001). OVX1, macrophage-colony stimulating factor, and CA-125-II as tumor markers for epithelial ovarian carcinoma: a critical appraisal. Cancer, 92(11), 2837–2844. https://doi.org/10.1002/1097-0142(20011201)92:11<2837::aid-cncr10093>3.0.co;2-5

Rani, S., Sehgal, A., Kaur, J., Pandher, D. K., & Punia, R. S. (2022). Osteopontin as a Tumor Marker in Ovarian Cancer. Journal of mid-life health, 13(3), 200–205. https://doi.org/10.4103/jmh.jmh_52_22

Eleftherios P. Diamandis et al.(2003), Human Kallikrein 6 (hK6): A New Potential Serum Biomarker for Diagnosis and Prognosis of Ovarian Carcinoma. JCO 21, 1035-1043. https://doi.org/10.1200/JCO.2003.02.022

Matsuzaki, H., Kobayashi, H., Yagyu, T., Wakahara, K., Kondo, T., Kurita, N., Sekino, H., Inagaki, K., Suzuki, M., Kanayama, N., & Terao, T. (2005). Plasma bikunin as a favorable prognostic factor in ovarian cancer. Journal of clinical oncology : official journal of the American Society of Clinical Oncology, 23(7), 1463–1472. https://doi.org/10.1200/JCO.2005.03.010

Hertlein, L., Stieber, P., Kirschenhofer, A., Krocker, K., Nagel, D., Lenhard, M., & Burges, A. (2012). Human epididymis protein 4 (HE4) in benign and malignant diseases. Clinical chemistry and laboratory medicine, 50(12), 2181–2188. https://doi.org/10.1515/cclm-2012-0097

Trifanescu, O. G., Gales, L. N., Tanase, B. C., Marinescu, S. A., Trifanescu, R. A., Gruia, I. M., Paun, M. A., Rebegea, L., Mitrica, R., Serbanescu, L., & Anghel, R. M. (2023). Prognostic Role of Vascular Endothelial Growth Factor and Correlation with Oxidative Stress Markers in Locally Advanced and Metastatic Ovarian Cancer Patients. Diagnostics (Basel, Switzerland), 13(1), 166. https://doi.org/10.3390/diagnostics13010166

Forstner, R., Meissnitzer, M., & Cunha, T. M. (2016). Update on Imaging of Ovarian Cancer. Current radiology reports, 4, 31. https://doi.org/10.1007/s40134-016-0157-9

Van Calster, B., Timmerman, D., Valentin, L., McIndoe, A., Ghaem-Maghami, S., Testa, A. C., Vergote, I., & Bourne, T. (2012). Triaging women with ovarian masses for surgery: observational diagnostic study to compare RCOG guidelines with an International Ovarian Tumour Analysis (IOTA) group protocol. BJOG : an international journal of obstetrics and gynaecology, 119(6), 662–671. https://doi.org/10.1111/j.1471-0528.2012.03297.x

Spencer, J. A., Forstner, R., Cunha, T. M., Kinkel, K., & ESUR Female Imaging Sub-Committee (2010). ESUR guidelines for MR imaging of the sonographically indeterminate adnexal mass: an algorithmic approach. European radiology, 20(1), 25–35. https://doi.org/10.1007/s00330-009-1584-2

Suidan, R. S., Ramirez, P. T., Sarasohn, D. M., Teitcher, J. B., Mironov, S., Iyer, R. B., Zhou, Q., Iasonos, A., Paul, H., Hosaka, M., Aghajanian, C. A., Leitao, M. M., Jr, Gardner, G. J., Abu-Rustum, N. R., Sonoda, Y., Levine, D. A., Hricak, H., & Chi, D. S. (2014). A multicenter prospective trial evaluating the ability of preoperative computed tomography scan and serum CA-125 to predict suboptimal cytoreduction at primary debulking surgery for advanced ovarian, fallopian tube, and peritoneal cancer. Gynecologic oncology, 134(3), 455–461. https://doi.org/10.1016/j.ygyno.2014.07.002

Iyer, V. R., & Lee, S. I. (2010). MRI, CT, and PET/CT for ovarian cancer detection and adnexal lesion characterization. AJR. American journal of roentgenology, 194(2), 311–321. https://doi.org/10.2214/AJR.09.3522

van Timmeren, J. E., Cester, D., Tanadini-Lang, S., Alkadhi, H., & Baessler, B. (2020). Radiomics in medical imaging-"how-to" guide and critical reflection. Insights into imaging, 11(1), 91. https://doi.org/10.1186/s13244-020-00887-2

Yancik, R. (1993), Ovarian cancer: Age contrasts in incidence, histology, disease stage at diagnosis, and mortality. Cancer, 71: 517-523. https://doi.org/10.1002/cncr.2820710205

Trifanescu, O. G., Gales, L. N., Trifanescu, R. A., & Anghel, R. M. (2018). CLINICAL PROGNOSTIC FACTORS IN PRE- AND POST-MENOPAUSAL WOMEN WITH OVARIAN CARCINOMA. Acta endocrinologica (Bucharest, Romania : 2005), 14(3), 353–359. https://doi.org/10.4183/aeb.2018.353

Stratton, J.F., Pharoah, P., Smith, S.K., Easton, D. and Ponder, B.A.J. (1998), A systematic review and meta-analysis of family history and risk of ovarian cancer. BJOG: An International Journal of Obstetrics & Gynaecology, 105: 493-499. https://doi.org/10.1111/j.1471-0528.1998.tb10148.x

Beral, V., Fraser, P., Chilvers, C. (1978). DOES PREGNANCY PROTECT AGAINST OVARIAN CANCER?, The Lancet, 311(8073), 1083-86. https://doi.org/10.1016/S0140-6736(78)90925-X

Murphy, M.A., Trabert, B., Yang, H.P. et al. Non-steroidal anti-inflammatory drug use and ovarian cancer risk: findings from the NIH-AARP Diet and Health Study and systematic review. Cancer Causes Control 23, 1839–1852 (2012). https://doi.org/10.1007/s10552-012-0063-2

Goodman, M.T., Howe, H.L., Tung, K.H., Hotes, J., Miller, B.A., Coughlin, S.S. and Chen, V.W. (2003), Incidence of ovarian cancer by race and ethnicity in the United States, 1992–1997†. Cancer, 97: 2676-2685. https://doi.org/10.1002/cncr.11349

Lacey, Jr JV, Mink PJ, Lubin JH, et al. (2002). Menopausal Hormone Replacement Therapy and Risk of Ovarian Cancer. JAMA. 288(3), 334–341. https://doi.org/10.1001/jama.288.3.334

Rice, M.S., Murphy, M.A. & Tworoger, S.S. Tubal ligation, hysterectomy and ovarian cancer: A meta-analysis. J Ovarian Res 5, 13 (2012). https://doi.org/10.1186/1757-2215-5-13

Havrilesky, Laura J. MD, MHSc; Moorman, Patricia G. PhD; Lowery, William J. MD; Gierisch, Jennifer M. PhD, MPH; Coeytaux, Remy R. MD, PhD; Urrutia, Rachel Peragallo MD; Dinan, Michaela PhD; McBroom, Amanda J. PhD; Hasselblad, Vic PhD; Sanders, Gillian D. PhD; Myers, Evan R. MD, MPH. Oral Contraceptive Pills as Primary Prevention for Ovarian Cancer: A Systematic Review and Meta-analysis. Obstetrics & Gynecology 122(1):p 139-147, July 2013. https://doi.org/10.1097/AOG.0b013e318291c235

Jordan, S. J., Whiteman, D. C., Purdie, D. M., Green, A. C., & Webb, P. M. (2006). Does smoking increase risk of ovarian cancer? A systematic review. Gynecologic oncology, 103(3), 1122–1129. https://doi.org/10.1016/j.ygyno.2006.08.012

Collaborative Group on Epidemiological Studies of Ovarian Cancer, Beral, V., Gaitskell, K., Hermon, C., Moser, K., Reeves, G., & Peto, R. (2012). Ovarian cancer and smoking: individual participant meta-analysis including 28,114 women with ovarian cancer from 51 epidemiological studies. The Lancet. Oncology, 13(9), 946–956. https://doi.org/10.1016/S1470-2045(12)70322-4

King, M.C., Marks, J.H., Mandell, J.B. (2003). Breast and Ovarian Cancer Risks Due to Inherited Mutations in BRCA1 and BRCA2. Science 302, 643-646. https://doi.org/10.1126/science.1088759

Moore, R. G., McMeekin, D. S., Brown, A. K., DiSilvestro, P., Miller, M. C., Allard, W. J., Gajewski, W., Kurman, R., Bast, R. C., Jr, & Skates, S. J. (2009). A novel multiple marker bioassay utilizing HE4 and CA125 for the prediction of ovarian cancer in patients with a pelvic mass. Gynecologic oncology, 112(1), 40–46. https://doi.org/10.1016/j.ygyno.2008.08.031

Moore, R. G., McMeekin, D. S., Brown, A. K., DiSilvestro, P., Miller, M. C., Allard, W. J., Gajewski, W., Kurman, R., Bast, R. C., Jr, & Skates, S. J. (2009). A novel multiple marker bioassay utilizing HE4 and CA125 for the prediction of ovarian cancer in patients with a pelvic mass. Gynecologic oncology, 112(1), 40–46. https://doi.org/10.1016/j.ygyno.2008.08.031

Dochez, V., Caillon, H., Vaucel, E., Dimet, J., Winer, N., & Ducarme, G. (2019). Biomarkers and algorithms for diagnosis of ovarian cancer: CA125, HE4, RMI and ROMA, a review. Journal of ovarian research, 12(1), 28. https://doi.org/10.1186/s13048-019-0503-7

Lu, M., Fan, Z., Xu, B., Chen, L., Zheng, X., Li, J., Znati, T., Mi, Q., & Jiang, J. (2020). Using machine learning to predict ovarian cancer. International journal of medical informatics, 141, 104195. https://doi.org/10.1016/j.ijmedinf.2020.104195

Hamidi, F., Gilani, N., Belaghi, R. A., Sarbakhsh, P., Edgünlü, T., & Santaguida, P. (2021). Exploration of Potential miRNA Biomarkers and Prediction for Ovarian Cancer Using Artificial Intelligence. Frontiers in genetics, 12, 724785. https://doi.org/10.3389/fgene.2021.724785

Kawakami, E., Tabata, J., Yanaihara, N., Ishikawa, T., Koseki, K., Iida, Y., Saito, M., Komazaki, H., Shapiro, J. S., Goto, C., Akiyama, Y., Saito, R., Saito, M., Takano, H., Yamada, K., & Okamoto, A. (2019). Application of Artificial Intelligence for Preoperative Diagnostic and Prognostic Prediction in Epithelial Ovarian Cancer Based on Blood Biomarkers. Clinical cancer research : an official journal of the American Association for Cancer Research, 25(10), 3006–3015. https://doi.org/10.1158/1078-0432.CCR-18-3378

Ahamad, M. M., Aktar, S., Uddin, M. J., Rahman, T., Alyami, S. A., Al-Ashhab, S., Akhdar, H. F., Azad, A., & Moni, M. A. (2022). Early-Stage Detection of Ovarian Cancer Based on Clinical Data Using Machine Learning Approaches. Journal of personalized medicine, 12(8), 1211. https://doi.org/10.3390/jpm12081211

Gore J. C. (2020). Artificial intelligence in medical imaging. Magnetic resonance imaging, 68, A1–A4. https://doi.org/10.1016/j.mri.2019.12.006

Xu, H. L., Gong, T. T., Liu, F. H., Chen, H. Y., Xiao, Q., Hou, Y., Huang, Y., Sun, H. Z., Shi, Y., Gao, S., Lou, Y., Chang, Q., Zhao, Y. H., Gao, Q. L., & Wu, Q. J. (2022). Artificial intelligence performance in image-based ovarian cancer identification: A systematic review and meta-analysis. EClinicalMedicine, 53, 101662. https://doi.org/10.1016/j.eclinm.2022.101662

Saida, T., Mori, K., Hoshiai, S., Sakai, M., Urushibara, A., Ishiguro, T., Minami, M., Satoh, T., & Nakajima, T. (2022). Diagnosing Ovarian Cancer on MRI: A Preliminary Study Comparing Deep Learning and Radiologist Assessments. Cancers, 14(4), 987. https://doi.org/10.3390/cancers14040987

Li, Y., Jian, J., Pickhardt, P. J., Ma, F., Xia, W., Li, H., Zhang, R., Zhao, S., Cai, S., Zhao, X., Zhang, J., Zhang, G., Jiang, J., Zhang, Y., Wang, K., Lin, G., Feng, F., Lu, J., Deng, L., Wu, X., … Gao, X. (2020). MRI-Based Machine Learning for Differentiating Borderline From Malignant Epithelial Ovarian Tumors: A Multicenter Study. Journal of magnetic resonance imaging : JMRI, 52(3), 897–904. https://doi.org/10.1002/jmri.27084

Chen, J., Liu, L., He, Z. et al. CT-Based Radiomics and Machine Learning for Differentiating Benign, Borderline, and Early-Stage Malignant Ovarian Tumors. J Digit Imaging. Inform. med. (2024). https://doi.org/10.1007/s10278-023-00903-z

Ghoniem, R.M., Algarni, A.D., Refky, B, Ewees, A.A. (2021) Multi-Modal Evolutionary Deep Learning Model for Ovarian Cancer Diagnosis. Symmetry, 13(4):643. https://doi.org/10.3390/sym13040643

Makar, A. P., Baekelandt, M., Tropé, C. G., & Kristensen, G. B. (1995). The prognostic significance of residual disease, FIGO substage, tumor histology, and grade in patients with FIGO stage III ovarian cancer. Gynecologic oncology, 56(2), 175–180. https://doi.org/10.1006/gyno.1995.1027

Hoeben, A., Joosten, E. A. J., & van den Beuken-van Everdingen, M. H. J. (2021). Personalized Medicine: Recent Progress in Cancer Therapy. Cancers, 13(2), 242. https://doi.org/10.3390/cancers13020242

Egen, J. G., Ouyang, W., & Wu, L. C. (2020). Human Anti-tumor Immunity: Insights from Immunotherapy Clinical Trials. Immunity, 52(1), 36–54. https://doi.org/10.1016/j.immuni.2019.12.010

Huan, Q., Cheng, S., Ma, H. F., Zhao, M., Chen, Y., & Yuan, X. (2024). Machine learning-derived identification of prognostic signature for improving prognosis and drug response in patients with ovarian cancer. Journal of cellular and molecular medicine, 28(1), e18021. https://doi.org/10.1111/jcmm.18021

Li, B., Ding, Z., Calbay, O., Li, Y., Li, T., Jin, L., & Huang, S. (2023). FAP is critical for ovarian cancer cell survival by sustaining NF-κB activation through recruitment of PRKDC in lipid rafts. Cancer gene therapy, 30(4), 608–621. https://doi.org/10.1038/s41417-022-00575-x

Zhao, B., & Pei, L. (2023). A macrophage related signature for predicting prognosis and drug sensitivity in ovarian cancer based on integrative machine learning. BMC medical genomics, 16(1), 230. https://doi.org/10.1186/s12920-023-01671-z

Wang, S., Liu, Z., Rong, Y., Zhou, B., Bai, Y., Wei, W., Wei, W., Wang, M., Guo, Y., & Tian, J. (2019). Deep learning provides a new computed tomography-based prognostic biomarker for recurrence prediction in high-grade serous ovarian cancer. Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology, 132, 171–177. https://doi.org/10.1016/j.radonc.2018.10.019

Lei, R., Yu, Y., Li, Q., Yao, Q., Wang, J., Gao, M., Wu, Z., Ren, W., Tan, Y., Zhang, B., Chen, L., Lin, Z., & Yao, H. (2022). Deep learning magnetic resonance imaging predicts platinum sensitivity in patients with epithelial ovarian cancer. Frontiers in oncology, 12, 895177. https://doi.org/10.3389/fonc.2022.895177

Wei, M., Zhang, Y., Ding, C., Jia, J., Xu, H., Dai, Y., Feng, G., Qin, C., Bai, G., Chen, S., & Wang, H. (2024). Associating Peritoneal Metastasis With T2-Weighted MRI Images in Epithelial Ovarian Cancer Using Deep Learning and Radiomics: A Multicenter Study. Journal of magnetic resonance imaging : JMRI, 59(1), 122–131. https://doi.org/10.1002/jmri.28761

Published

05-31-2024

How to Cite

Yau, C., & Huang, Y. (2024). Would Artificial Intelligence Methods Improve Early Diagnosis and Progress of Ovarian Cancer?. Journal of Student Research, 13(2). https://doi.org/10.47611/jsrhs.v13i2.6793

Issue

Section

HS Review Articles