Comparison of NK cell count between 1% and 10% FBS culture media concentration by FACS analysis
DOI:
https://doi.org/10.47611/jsrhs.v13i2.6754Keywords:
NK cell, Cell culture, Fetal Bovine Serum (FBS), Flow cytometry, FACSAbstract
Recently, there has been a growing research interest in the application of immunotherapy for cancer treatment. Various approaches have been developed, and one of these methods involves utilizing Natural Killer (NK) cells of the immune system to specifically target cancer cells. Research on this method necessitates the mass and stable production of NK cells through culturing. For NK cell culture, Fetal Bovine Serum (FBS) is widely used in the industry at concentrations ranging from 10% to 20%. In an effort to explore a more efficient culturing technique, this study aims to investigate the effect of 1% FBS on cell viability of NK cells in cell culture. Because NK cells are usually defined by cell surface molecules, the efficacy of using a lower FBS concentration was quantitatively measured using Fluorescence-Activated Cell Sorting (FACS). The cell counts of cells cultured in 1% FBS was compared to those of cells cultured in 10% FBS. The results showed that no significant difference was found between cell count of cells cultured in 1% and 10% FBS. Thus, 1% FBS concentration culturing method was not found to be inferior. Further research is needed on the effect of replicating cancer microenvironment on NK cell viability.
Downloads
References or Bibliography
Arachchige, A. S. P. M. (2021). Human NK cells: From development to effector functions. Innate Immunity, 27(3), 212–229. https://doi.org/10.1177/17534259211001512
Bi, J., & Wang, X. (2020). Molecular regulation of NK cell maturation. Frontiers in Immunology, 11. https://doi.org/10.3389/fimmu.2020.01945
Björkström, N. K., Strunz, B., & Ljunggren, H. G. (2021). Natural killer cells in antiviral immunity. Nature Reviews Immunology, 22(2), 112–123. https://doi.org/10.1038/s41577-021-00558-3
Cózar, B., Greppi, M., Carpentier, S., Narni-Mancinelli, É., Chiossone, L., & Vivier, É. (2021). Tumor-Infiltrating natural killer cells. Cancer Discovery, 11(1), 34–44. https://doi.org/10.1158/2159-8290.cd-20-0655
Crinier, A., Narni-Mancinelli, É., Ugolini, S., & Vivier, É. (2020). SnapShot: Natural Killer Cells. Cell, 180(6), 1280-1280.e1. https://doi.org/10.1016/j.cell.2020.02.029
De Jonge, P., Van Hauten, P. M., Janssen, L. M. A., De Goede, A. L., Berrien-Elliott, M. M., Van Der Meer, J. M., Mousset, C. M., Roeven, M. W., Foster, M., Blijlevens, N. M. A., Hobo, W., Fehniger, T. A., Jansen, J. H., Schaap, N., & Dolstra, H. (2023). Good manufacturing practice production of CD34+ progenitor-derived NK cells for adoptive immunotherapy in acute myeloid leukemia. Cancer Immunology, Immunotherapy, 72(10), 3323–3335. https://doi.org/10.1007/s00262-023-03492-6
Frutoso, M., & Mortier, E. (2019). NK cell hyporesponsiveness: More is not always better. International Journal of Molecular Sciences, 20(18), 4514. https://doi.org/10.3390/ijms20184514
Gong, Y., Wolterink, R. G. J. K., Wang, J., Bos, G. M., & Germeraad, W. T. (2021). Chimeric antigen receptor natural killer (CAR-NK) cell design and engineering for cancer therapy. Journal of Hematology & Oncology, 14(1). https://doi.org/10.1186/s13045-021-01083-5
Hodgins, J. J., Khan, S., Park, M. M., Auer, R. C., & Ardolino, M. (2019). Killers 2.0: NK cell therapies at the forefront of cancer control. Journal of Clinical Investigation, 129(9), 3499–3510. https://doi.org/10.1172/jci129338
Huang, Z., Blum, R., Bjordahl, R., Gaidarova, S., Rogers, P., Lee, T. T., Abujarour, R., Bonello, G., Wu, J., Tsai, P., Miller, J. S., Walcheck, B., Valamehr, B., & Kaufman, D. S. (2020). Pluripotent stem cell–derived NK cells with high-affinity noncleavable CD16a mediate improved antitumor activity. Blood, 135(6), 399–410. https://doi.org/10.1182/blood.2019000621
Islam, R., Pupovac, A., Evtimov, V., Boyd, N., Shu, R., Boyd, R., & Trounson, A. (2021). Enhancing a natural killer: Modification of NK cells for cancer immunotherapy. Cells, 10(5), 1058. https://doi.org/10.3390/cells10051058
Jiang, H., & Jiang, J. (2023). Balancing act: the complex role of NK cells in immune regulation. Frontiers in Immunology, 14. https://doi.org/10.3389/fimmu.2023.1275028
Kweon, S., Phan, M. T., Chun, S., Yu, H., Kim, J., Kim, S., Lee, J., Ali, A. K., Lee, S. H., Kim, S., Doh, J., & Cho, D. (2019). Expansion of human NK cells using K562 cells expressing OX40 ligand and short exposure to IL-21. Frontiers in Immunology, 10. https://doi.org/10.3389/fimmu.2019.00879
Mantesso, S., Geerts, D., Spanholtz, J., & Kučerová, L. (2020). Genetic engineering of natural killer cells for enhanced antitumor function. Frontiers in Immunology, 11. https://doi.org/10.3389/fimmu.2020.607131
Martin-Iglesias, S., Herrera, L., Santos, S., Vesga, M. Á., Eguizábal, C., Lanceros‐Méndez, S., & Silván, U. (2023). Analysis of the impact of handling and culture on the expansion and functionality of NK cells. Frontiers in Immunology, 14. https://doi.org/10.3389/fimmu.2023.1225549
Minetto, P., Guolo, F., Pesce, S., Greppi, M., Obino, V., Ferretti, E., Sivori, S., Genova, C., Lemoli, R. M., & Marcenaro, E. (2019). Harnessing NK cells for cancer treatment. Frontiers in Immunology, 10. https://doi.org/10.3389/fimmu.2019.02836
Myers, J. A., & Miller, J. S. (2020). Exploring the NK cell platform for cancer immunotherapy. Nature Reviews Clinical Oncology, 18(2), 85–100. https://doi.org/10.1038/s41571-020-0426-7
Nersesian, S., Carter, E. B., Lee, S. N., Westhaver, L. P., & Boudreau, J. E. (2023). Killer instincts: natural killer cells as multifactorial cancer immunotherapy. Frontiers in Immunology, 14. https://doi.org/10.3389/fimmu.2023.1269614
Parodi, M., Astigiano, S., Carrega, P., Pietra, G., Vitale, C., Damele, L., Grottoli, M., De La Luz Guevara Lopez, M., Ferracini, R., Bertolini, G., Roato, I., Vitale, M., & Orecchia, P. (2023). Murine models to study human NK cells in human solid tumors. Frontiers in Immunology, 14. https://doi.org/10.3389/fimmu.2023.1209237
Portale, F., & Di Mitri, D. (2023). NK cells in cancer: mechanisms of dysfunction and therapeutic potential. International Journal of Molecular Sciences, 24(11), 9521. https://doi.org/10.3390/ijms24119521
Rethacker, L., Boy, M., Bisio, V., Roussin, F., Denizeau, J., Vincent‐Salomon, A., Borcoman, É., Sedlik, C., Piaggio, E., Toubert, A., Dulphy, N., & Caignard, A. (2022). Innate lymphoid cells: NK and cytotoxic ILC3 subsets infiltrate metastatic breast cancer lymph nodes. OncoImmunology, 11(1). https://doi.org/10.1080/2162402x.2022.2057396
Vogler, M., Shanmugalingam, S., Särchen, V., Reindl, L. M., Grèze, V., Buchinger, L., Kühn, M. W., & Ullrich, E. (2021). Unleashing the power of NK cells in anticancer immunotherapy. Journal of Molecular Medicine, 100(3), 337–349. https://doi.org/10.1007/s00109-021-02120-z
Vyas, M., Requesens, M., Nguyen, T. H., Peigney, D., Azin, M., & Demehri, S. (2023). Natural killer cells suppress cancer metastasis by eliminating circulating cancer cells. Frontiers in Immunology, 13. https://doi.org/10.3389/fimmu.2022.1098445
Wu, S., Fu, T., & Jiang, Y. (2020). Natural killer cells in cancer biology and therapy. Molecular Cancer, 19(1). https://doi.org/10.1186/s12943-020-01238-x
Yao, L., Hou, J., Xin, W., Lu, Y., Jin, Z., Zhou, Y., Yu, B., Li, J., Yang, Z., Li, C., Yan, M., Zhu, Z., Liu, B., Yan, C., & Su, L. (2023). Cancer-associated fibroblasts impair the cytotoxic function of NK cells in gastric cancer by inducing ferroptosis via iron regulation. Redox Biology, 67, 102923. https://doi.org/10.1016/j.redox.2023.102923
Wong, P., Wagner, J. A., Berrien-Elliott, M. M., Schappe, T., & Fehniger, T. A. (2021). Flow cytometry-based ex vivo murine NK cell cytotoxicity assay. STAR Protocols, 2(1), 100262. https://doi.org/10.1016/j.xpro.2020.100262
Published
How to Cite
Issue
Section
Copyright (c) 2024 Joo-Eun Lee
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.