New Horizons and Breakthroughs in the Therapeutic Treatments for Glioblastoma

Authors

  • Eric Yang Dominican International School

DOI:

https://doi.org/10.47611/jsrhs.v13i2.6664

Keywords:

Glioblastoma, Tumor Heterogeneity, Tumor Mutational Burden, Immune Checkpoints, Immunosuppressive Tumor Microenvironment, Glioma Stem-Like Cells, Tumor Treating Fields, Carmustine Wafer, Angiogenesis Inhibition, Dendritic Cell Vaccination, Immune Checkpoint Inhibitors, CRISPR-Cas9, Oncology

Abstract

Glioblastoma represents a difficult challenge in both oncology and neurosurgery, characterized by its aggressive nature and poor prognosis. Despite its multimodal approach to standard treatment, combining surgery and chemoradiation therapy, the overall survival for patients remains disappointingly low. This review paper provides an overview of the clinical challenges associated with glioblastoma treatment, including tumor heterogeneity, low mutational burden, cancer stemness, and its immunosuppressive microenvironment. In addition, we explore promising future therapies such as the tumor treating fields (TTFields), carmustine wafer treatment, angiogenesis inhibition, CRISPR-Cas9 genome editing therapy, and immunotherapies such as dendritic cell vaccination (DCV) and immune checkpoint inhibitors (ICIs). Across the review, we highlight the potential, progress, and shortcomings of each therapeutic approach by addressing their respective success and challenges. By analyzing this information, we strive to provide a comprehensive review of the current progress of glioblastoma treatment and its future therapeutic potential.

Downloads

Download data is not yet available.

References or Bibliography

Al-Sammarraie, N., & Ray, S. K. (2021). Applications of CRISPR-Cas9 technology to genome editing in glioblastoma multiforme. Cells, 10(9), 2342.

Chamberlain, M. C. (2011). Bevacizumab for the treatment of recurrent glioblastoma. Clinical Medicine Insights: Oncology, 5, CMO-S7232.

Datsi, A., & Sorg, R. V. (2021). Dendritic cell vaccination of glioblastoma: road to success or dead end. Frontiers in Immunology, 12, 770390.

Delgado-López, P. D., & Corrales-García, E. M. (2016). Survival in glioblastoma: a review on the impact of treatment modalities. Clinical and Translational Oncology, 18(11), 1062-1071.

Ding, Z. C., Lu, X., Yu, M., Lemos, H., Huang, L., Chandler, P., ... & Zhou, G. (2014). Immunosuppressive myeloid cells induced by chemotherapy attenuate antitumor CD4+ T-cell responses through the PD-1–PD-L1 axis. Cancer research, 74(13), 3441-3453.

Friedman, H. S., Prados, M. D., Wen, P. Y., Mikkelsen, T., Schiff, D., Abrey, L. E., ... & Cloughesy, T. (2009). Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. Journal of clinical oncology, 27(28), 4733-4740.

Gacche, R. N. (2015). Compensatory angiogenesis and tumor refractoriness. Oncogenesis, 4(6), e153-e153.

Hao, C., Chen, G., Zhao, H., Li, Y., Chen, J., Zhang, H., ... & Jiang, W. G. (2020). PD-L1 expression in glioblastoma, the clinical and prognostic significance: a systematic literature review and meta-analysis. Frontiers in oncology, 10, 1015.

Hodis, E., Watson, I. R., Kryukov, G. V., Arold, S. T., Imielinski, M., Theurillat, J. P., ... & Chin, L. (2012). A landscape of driver mutations in melanoma. Cell, 150(2), 251-263.

Huang, J., Liu, F., Liu, Z., Tang, H., Wu, H., Gong, Q., & Chen, J. (2017). Immune checkpoint in glioblastoma: promising and challenging. Frontiers in pharmacology, 8, 242.

Inda, M. D. M., Bonavia, R., & Seoane, J. (2014). Glioblastoma multiforme: a look inside its heterogeneous nature. Cancers, 6(1), 226-239.

Jackson, C., Ruzevick, J., Phallen, J., Belcaid, Z., & Lim, M. (2011). Challenges in immunotherapy presented by the glioblastoma multiforme microenvironment. Journal of Immunology Research, 2011.

Jiang, W., Bikard, D., Cox, D., Zhang, F., & Marraffini, L. A. (2013). RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nature biotechnology, 31(3), 233-239.

Johnson, D. R., & O’Neill, B. P. (2012). Glioblastoma survival in the United States before and during the temozolomide era. Journal of neuro-oncology, 107, 359-364.

Li, D., Ren, T., Wang, X., Xiao, Z., Sun, G., Zhang, N., ... & Zhong, R. (2023). Development and in vitro evaluation of carmustine delivery platform: A hypoxia-sensitive anti-drug resistant nanomicelle with BBB penetrating ability. Biomedicine & Pharmacotherapy, 167, 115631.

Liu, F., Huang, J., Liu, X., Cheng, Q., Luo, C., & Liu, Z. (2020). CTLA-4 correlates with immune and clinical characteristics of glioma. Cancer cell international, 20, 1-10.

Marusyk, A., & Polyak, K. (2010). Tumor heterogeneity: causes and consequences. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 1805(1), 105-117.

Medikonda, R., Dunn, G., Rahman, M., Fecci, P., & Lim, M. (2021). A review of glioblastoma immunotherapy. Journal of neuro-oncology, 151, 41-53.

Nam, J. Y., & De Groot, J. F. (2017). Treatment of glioblastoma. Journal of oncology practice, 13(10), 629-638.

Nizamutdinov, D., Stock, E. M., Dandashi, J. A., Vasquez, E. A., Mao, Y., Dayawansa, S., ... & Huang, J. H. (2018).

Prognostication of survival outcomes in patients diagnosed with glioblastoma. World neurosurgery, 109, e67-e74.

Ohnishi, T., Yamashita, D., Inoue, A., Suehiro, S., Ohue, S., & Kunieda, T. (2022). Is interstitial chemotherapy with carmustine (BCNU) wafers effective against local recurrence of glioblastoma? A pharmacokinetic study by measurement of BCNU in the tumor resection cavity. Brain Sciences, 12(5), 567.

Ortensi, B., Setti, M., Osti, D., & Pelicci, G. (2013). Cancer stem cell contribution to glioblastoma invasiveness. Stem cell research & therapy, 4(1), 1-11.

Preusser, M., Lim, M., Hafler, D. A., Reardon, D. A., & Sampson, J. H. (2015). Prospects of immune checkpoint modulators in the treatment of glioblastoma. Nature Reviews Neurology, 11(9), 504-514.

Ram, Z., Kim, C. Y., Hottinger, A. F., Idbaih, A., Nicholas, G., & Zhu, J. J. (2021). Efficacy and safety of tumor treating fields (TTFields) in elderly patients with newly diagnosed glioblastoma: subgroup analysis of the phase 3 EF-14 clinical trial. Frontiers in Oncology, 11, 671972.

Ricciuti, B., Wang, X., Alessi, J. V., Rizvi, H., Mahadevan, N. R., Li, Y. Y., ... & Awad, M. M. (2022). Association of high tumor mutation burden in non–small cell lung cancers with increased immune infiltration and improved clinical outcomes of PD-L1 blockade across PD-L1 expression levels. JAMA oncology, 8(8), 1160-1168.

Sabel, M., & Giese, A. (2008). Safety profile of carmustine wafers in malignant glioma: a review of controlled trials and a decade of clinical experience. Current medical research and opinion, 24(11), 3239-3257.

Sanders, S., & Debinski, W. (2020). Challenges to successful implementation of the immune checkpoint inhibitors for treatment of glioblastoma. International Journal of Molecular Sciences, 21(8), 2759.

Schaller, T. H., & Sampson, J. H. (2017). Advances and challenges: dendritic cell vaccination strategies for glioblastoma. Expert review of vaccines, 16(1), 27-36.

Schou Nørøxe, D., Flynn, A., Westmose Yde, C., Østrup, O., Cilius Nielsen, F., Skjøth‐Rasmussen, J., ... & Lassen, U. (2022). Tumor mutational burden and purity adjustment before and after treatment with temozolomide in 27 paired samples of glioblastoma: a prospective study. Molecular Oncology, 16(1), 206-218.

Strobel, H., Baisch, T., Fitzel, R., Schilberg, K., Siegelin, M. D., Karpel-Massler, G., ... & Westhoff, M. A. (2019). Temozolomide and other alkylating agents in glioblastoma therapy. Biomedicines, 7(3), 69.

Stupp, R., Taillibert, S., Kanner, A., Kesari, S., Toms, S. A., Barnett, G. H., ... & Ram, Z. (2015). Tumor treating fields (TTFields): A novel treatment modality added to standard chemo-and radiotherapy in newly diagnosed glioblastoma—First report of the full dataset of the EF14 randomized phase III trial.

Tamimi, A. F., & Juweid, M. (2017). Epidemiology and outcome of glioblastoma. Exon Publications, 143-153.

Wang, L., Ge, J., Lan, Y., Shi, Y., Luo, Y., Tan, Y., ... & Luo, T. (2020). Tumor mutational burden is associated with poor outcomes in diffuse glioma. BMC cancer, 20(1), 1-12.

Xiao, Z. Z., Wang, Z. F., Lan, T., Huang, W. H., Zhao, Y. H., Ma, C., & Li, Z. Q. (2020). Carmustine as a supplementary therapeutic option for glioblastoma: a systematic review and meta-analysis. Frontiers in neurology, 11, 1036.

Yang, W., Li, Y., Gao, R., Xiu, Z., & Sun, T. (2020). MHC class I dysfunction of glioma stem cells escapes from CTL-mediated immune response via activation of Wnt/β-catenin signaling pathway. Oncogene, 39(5), 1098-1111.

Yu, Z., Zhao, G., Zhang, Z., Li, Y., Chen, Y., Wang, N. A. N., ... & Xie, G. (2016). Efficacy and safety of bevacizumab for the treatment of glioblastoma. Experimental and therapeutic medicine, 11(2), 371-380.

Published

05-31-2024

How to Cite

Yang, E. (2024). New Horizons and Breakthroughs in the Therapeutic Treatments for Glioblastoma. Journal of Student Research, 13(2). https://doi.org/10.47611/jsrhs.v13i2.6664

Issue

Section

HS Review Articles