The Neuroscience of Motivated Memory
DOI:
https://doi.org/10.47611/jsrhs.v13i2.6636Keywords:
Declarative memory, Motivation, Dopamine, Reward motivationAbstract
Motivation is essential to memory because it ensures important memories are prioritized for future behavior. Recent studies have looked into the multi-faceted relationship between motivation and memory; other biological evidence which links motivation and memory has given rise to an examination of the underlying neurobiological basis that facilitates this connection. The neurotransmitter dopamine is strongly associated with motivation. Particularly, midbrain dopamine neurons in the reward-regulating ventral tegmental area which project to the hippocampus are well-positioned to enable a motivational influence on memory formation. This prompts an examination of the differing effects of extrinsic and intrinsic motivation on memory encoding and consolidation, as well evidence supporting the crucial role of coordinated activity between the mesolimbic pathway and the hippocampus. In this review, we first look into hypotheses about the biological processes through which dopamine is associated with reward motivation and memory. We then examine and summarize the neurobiologic hypotheses and recent evidence on the interplay between motivation and declarative memory with a focus on dopamine as the linking mechanism.
Downloads
References or Bibliography
Adcock, R. A., Thangavel, A., Whitfield-Gabrieli, S., Knutson, B., & Gabrieli, J. D. E. (2006). Reward-motivated learning: Mesolimbic activation precedes memory formation. Neuron, 50(3), 507–517. https://doi.org/10.1016/j.neuron.2006.03.036
Braver, T. S., Krug, M. K., Chiew, K. S., Kool, W., Westbrook, J. A., Clement, N. J., Adcock, R. A., Barch, D. M., Botvinick, M. M., Carver, C. S., Cools, R., Custers, R., Dickinson, A., Dweck, C. S., Fishbach, A., Gollwitzer, P. M., Hess, T. M., Isaacowitz, D. M., Mather, M., … for the MOMCAI group. (2014).
Mechanisms of motivation–cognition interaction: Challenges and opportunities. Cognitive, Affective, & Behavioral Neuroscience, 14(2), 443–472. https://doi.org/10.3758/s13415-014-0300-0
Bromberg-Martin, E. S., Matsumoto, M., & Hikosaka, O. (2010). Dopamine in motivational control: Rewarding, aversive, and alerting. Neuron, 68(5), 815–834. https://doi.org/10.1016/j.neuron.2010.11.022
Cowan, E. T., Schapiro, A. C., Dunsmoor, J. E., & Murty, V. P. (2021). Memory consolidation as an adaptive process. Psychonomic Bulletin & Review, 28(6), 1796–1810. https://doi.org/10.3758/s13423-021-01978-x
Delgado, M. R., Phelps, E. A., & Robbins, T. W. (2011). Decision making, affect, and learning. Oxford University Press. https://doi.org/10.1093/acprof:oso/9780199600434.001.0001
Dickerson, K. C., & Adcock, R. A. (2018). Motivation and memory. In J. T. Wixted (Ed.), Stevens’ Handbook of Experimental Psychology and Cognitive Neuroscience (1st ed., pp. 1–36). Wiley. https://doi.org/10.1002/9781119170174.epcn107
Duan, H., Fernández, G., van Dongen, E., & Kohn, N. (2020). The effect of intrinsic and extrinsic motivation on memory formation: Insight from behavioral and imaging study. Brain Structure and Function, 225(5), 1561–1574. https://doi.org/10.1007/s00429-020-02074-x
Gruber, M. J., Gelman, B. D., & Ranganath, C. (2014). States of curiosity modulate hippocampus-dependent learning via the dopaminergic circuit. Neuron, 84(2), 486–496. https://doi.org/10.1016/j.neuron.2014.08.060
Kang, M. J., Hsu, M., Krajbich, I. M., Loewenstein, G., McClure, S. M., Wang, J. T., & Camerer, C. F. (2009). The wick in the candle of learning: Epistemic curiosity activates reward circuitry and enhances memory. Psychological Science, 20(8), 963–973. https://doi.org/10.1111/j.1467-9280.2009.02402.x
Kim, S. (2013). Neuroscientific model of motivational process. Frontiers in Psychology, 4, 98. https://doi.org/10.3389/fpsyg.2013.00098
Martin, S. J., Grimwood, P. D., & Morris, R. G. M. (2000). Synaptic plasticity and memory: An evaluation of the hypothesis. Annual Review of Neuroscience, 23(1), 649–711. https://doi.org/10.1146/annurev.neuro.23.1.649
McGillivray, S., Murayama, K., & Castel, A. D. (2015). Thirst for knowledge: The effects of curiosity and interest on memory in younger and older adults. Psychology and Aging, 30(4), 835–841. https://doi.org/10.1037/a0039801
Miendlarzewska, E. A., Bavelier, D., & Schwartz, S. (2016). Influence of reward motivation on human declarative memory. Neuroscience & Biobehavioral Reviews, 61, 156–176. https://doi.org/10.1016/j.neubiorev.2015.11.015
Morris, L. S., Grehl, M. M., Rutter, S. B., Mehta, M., & Westwater, M. L. (n.d.). On what motivates us: A detailed review of intrinsic v. extrinsic motivation. Psychological Medicine, 52(10), 1801–1816. https://doi.org/10.1017/S0033291722001611
Murayama, K., & Kitagami, S. (2014). Consolidation power of extrinsic rewards: Reward cues enhance long-term memory for irrelevant past events. Journal of Experimental Psychology: General, 143(1), 15–20. https://doi.org/10.1037/a0031992
Murayama, K., & Kuhbandner, C. (2011). Money enhances memory consolidation – But only for boring material. Cognition, 119(1), 120–124. https://doi.org/10.1016/j.cognition.2011.01.001
Murphy, C., Dehmelt, V., Yonelinas, A. P., Ranganath, C., & Gruber, M. J. (2021). Temporal proximity to the elicitation of curiosity is key for enhancing memory for incidental information. Learning & Memory, 28(2), 34–39. https://doi.org/10.1101/lm.052241.120
Murty, V. P., & Dickerson, K. C. (2016). Motivational influences on memory. In S. Kim, J. Reeve, & M. Bong (Eds.), Advances in Motivation and Achievement (Vol. 19, pp. 203–227). Emerald Group Publishing Limited. https://doi.org/10.1108/S0749-742320160000019019
Padulo, C., Marascia, E., Conte, N., Passarello, N., Mandolesi, L., & Fairfield, B. (2022). Curiosity killed the cat but not memory: Enhanced performance in high-curiosity states. Brain Sciences, 12(7), 846. https://doi.org/10.3390/brainsci12070846
Pascoe, L., Spencer-Smith, M., Giallo, R., Seal, M. L., Georgiou-Karistianis, N., Nosarti, C., Josev, E. K., Roberts, G., Doyle, L. W., Thompson, D. K., & Anderson, P. J. (2018). Intrinsic motivation and academic performance in school-age children born extremely preterm: The contribution of working memory. Learning and Individual Differences, 64, 22–32. https://doi.org/10.1016/j.lindif.2018.04.005
Patil, A., Murty, V. P., Dunsmoor, J. E., Phelps, E. A., & Davachi, L. (2017). Reward retroactively enhances memory consolidation for related items. Learning & Memory, 24(1), 65–69. https://doi.org/10.1101/lm.042978.116
Salvetti, B., Morris, R. G. M., & Wang, S.-H. (2014). The role of rewarding and novel events in facilitating memory persistence in a separate spatial memory task. Learning & Memory (Cold Spring Harbor, N.Y.), 21(2), 61–72. https://doi.org/10.1101/lm.032177.113
Shohamy, D., & Adcock, R. A. (2010). Dopamine and adaptive memory. Trends in Cognitive Sciences, 14(10), 464–472. https://doi.org/10.1016/j.tics.2010.08.002
Tsetsenis, T., Broussard, J. I., & Dani, J. A. (2023). Dopaminergic regulation of hippocampal plasticity, learning, and memory. Frontiers in Behavioral Neuroscience, 16. https://www.frontiersin.org/articles/10.3389/fnbeh.2022.1092420
Wise, R. A. (2004). Dopamine, learning and motivation. Nature Reviews Neuroscience, 5(6), 483–494. https://doi.org/10.1038/nrn1406
Wolosin, S. M., Zeithamova, D., & Preston, A. R. (2012). Reward modulation of hippocampal subfield activation during successful associative encoding and retrieval. Journal of Cognitive Neuroscience, 24(7), 1532–1547. https://doi.org/10.1162/jocn_a_00237
Xue, J., Jiang, T., Chen, C., Murty, V. P., Li, Y., Ding, Z., & Zhang, M. (2023). The interactive effect of external rewards and self-determined choice on memory. Psychological Research, 87(7), 2101–2110. https://doi.org/10.1007/s00426-023-01807-x
Published
How to Cite
Issue
Section
Copyright (c) 2024 Leran Xie
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.