CRISPR knockout of HRE sequences in the C9orf72 gene to treat ALS, FTD, and HDL2

Authors

  • Arya Haridas Central Bucks High School East
  • Dr. Nicole Guilz

DOI:

https://doi.org/10.47611/jsrhs.v13i2.6589

Keywords:

CRISPR, C9orf72, Hexanucleotide Repeat Expansion (HRE), Amyotrophic Lateral Sclerosis (ALS), Frontotemporal Dementia (FTD), Huntington disease-like 2 (HDL2)

Abstract

Amyotrophic lateral sclerosis (ALS), familial frontotemporal dementia (FTD), and phenotypic Huntington syndrome-like disease (HDL2) have in common multiple hexanucleotide repeat expansions (HREs), in the C9orf72 gene. The C9orf72 protein aids in sending and receiving signals in multiple neurons. The C9orf72 protein is found primarily expressed in the brain and specific neurons, especially in the cerebral cortex. In ALS, FTD, and HDL2, the gene has a repeat sequence GGGGCC that is found in many patients with familial neurodegenerative conditions, resulting in the loss of function of many patients' motor neurons. The repeat sequence causes reduced production of the C9orf72 protein, called haploinsufficiency, and simultaneously a gain-of-function mutation by producing toxic dipeptide proteins, and excess RNA foci (RNA toxicity) in the brain. Different gene editing techniques in vitro and in vivo have shown the successful knockout of genes in the brain as well as on the C9orf72 gene and the connection to ALS, FTD, and Huntington-like syndrome in mice. CRISPR is a gene-editing tool used to target HREs. This review will focus on knocking down/out the HREs of the C9orf72 gene using various delivery strategies. Targeting the C9orf72 gene HREs, it would be expected that a decrease in protein aggregations that affect motor neurons, be able to prevent protein haploinsufficiency and prevent RNA toxicity, which are the main factors of these three neurodegenerative diseases. Using gene editing, treatment may be possible for patients with familial ALS, FTD, and HDL2 with the HRE sequences in the C9orf72 gene.

Downloads

Download data is not yet available.

References or Bibliography

Alahmari, A. (2021). Blood-Brain Barrier Overview: Structural and Functional Correlation. In Neural Plasticity (Vol. 2021). Hindawi Limited. https://doi.org/10.1155/2021/6564585

Anderson, D. G., Krause, A., Margolis, R.; L., Adam, M. P., Feldman, J., & Mirzaa, G. M. (2004). Huntington Disease-Like 2.

Bang, J., Spina, S., & Miller, B. L. (2015). Frontotemporal dementia. In The Lancet (Vol. 386, Issue 10004, pp. 1672–1682). Lancet Publishing Group. https://doi.org/10.1016/S0140-6736(15)00461-4

Bondy-Denomy, J. (2018). Protein Inhibitors of CRISPR-Cas9. In ACS Chemical Biology (Vol. 13, Issue 2, pp. 417–423). American Chemical Society. https://doi.org/10.1021/acschembio.7b00831

Daneman, R., & Prat, A. (2015). The blood–brain barrier. Cold Spring Harbor Perspectives in Biology, 7(1). https://doi.org/10.1101/cshperspect.a020412

Dong, W., & Kantor, B. (2021). Lentiviral vectors for delivery of gene-editing systems based on crispr/cas: Current state and perspectives. In Viruses (Vol. 13, Issue 7). MDPI. https://doi.org/10.3390/v13071288

Gendron, T. F., & Petrucelli, L. (2018). Disease mechanisms of c9orf72 repeat expansions. Cold Spring Harbor Perspectives in Medicine, 8(4). https://doi.org/10.1101/cshperspect.a024224

Gonzalez-Perez, O., Guerrero-Cazares, H., & Quiñones-Hinojosa, A. (2010). Targeting of deep brain structures with microinjections for delivery of drugs, viral vectors, or cell transplants. Journal of Visualized Experiments, 46. https://doi.org/10.3791/2082

Grad, L. I., Rouleau, G. A., Ravits, J., & Cashman, N. R. (2017). Clinical Spectrum of Amyotrophic Lateral Sclerosis (ALS). In Cold Spring Harbor perspectives in medicine (Vol. 7, Issue 8). https://doi.org/10.1101/cshperspect.a024117

Guo, C., Ma, X., Gao, F., & Guo, Y. (2023). Off-target effects in CRISPR/Cas9 gene editing. In Frontiers in Bioengineering and Biotechnology (Vol. 11). Frontiers Media S.A. https://doi.org/10.3389/fbioe.2023.1143157

Hardiman, O., Al-Chalabi, A., Chio, A., Corr, E. M., Logroscino, G., Robberecht, W., Shaw, P. J., Simmons, Z., & Van Den Berg, L. H. (2017). Amyotrophic lateral sclerosis. In Nature Reviews Disease Primers (Vol. 3). Nature Publishing Group. https://doi.org/10.1038/nrdp.2017.71

Kirby, J., Al Sultan, A., Waller, R., & Heath, P. (2016). The genetics of amyotrophic lateral sclerosis: current insights. Degenerative Neurological and Neuromuscular Disease, 49. https://doi.org/10.2147/dnnd.s84956

Kortazar-Zubizarreta, I., Manero-Azua, A., Afonso-Agüera, J., & Perez de Nanclares, G. (2023). C9ORF72 Gene GGGGCC Hexanucleotide Expansion: A High Clinical Variability from Amyotrophic Lateral Sclerosis to Frontotemporal Dementia. Journal of Personalized Medicine, 13(9). https://doi.org/10.3390/jpm13091396

Leko, M. B., Župunski, V., Kirincich, J., Smilović, D., Hortobágyi, T., Hof, P. R., & Šimić, G. (2019). Molecular mechanisms of neurodegeneration related to C9orf72 hexanucleotide repeat expansion. In Behavioural Neurology (Vol. 2019). Hindawi Limited. https://doi.org/10.1155/2019/2909168

Lino, C. A., Harper, J. C., Carney, J. P., & Timlin, J. A. (2018). Delivering crispr: A review of the challenges and approaches. In Drug Delivery (Vol. 25, Issue 1, pp. 1234–1257). Taylor and Francis Ltd. https://doi.org/10.1080/10717544.2018.1474964

Ma, Y., Zhang, L., & Huang, X. (2014). Genome modification by CRISPR/Cas9. In FEBS Journal (Vol. 281, Issue 23, pp. 5186–5193). Blackwell Publishing Ltd. https://doi.org/10.1111/febs.13110

McEachin, Z. T., Parameswaran, J., Raj, N., Bassell, G. J., & Jiang, J. (2020). RNA-mediated toxicity in C9orf72 ALS and FTD. In Neurobiology of Disease (Vol. 145). Academic Press Inc. https://doi.org/10.1016/j.nbd.2020.105055

Meijboom, K. E., Abdallah, A., Fordham, N. P., Nagase, H., Rodriguez, T., Kraus, C., Gendron, T. F., Krishnan, G., Esanov, R., Andrade, N. S., Rybin, M. J., Ramic, M., Stephens, Z. D., Edraki, A., Blackwood, M. T., Kahriman, A., Henninger, N., Kocher, J. P. A., Benatar, M., … Mueller, C. (2022). CRISPR/Cas9-mediated excision of ALS/FTD-causing hexanucleotide repeat expansion in C9ORF72 rescues major disease mechanisms in vivo and in vitro. Nature Communications, 13(1). https://doi.org/10.1038/s41467-022-33332-7

Moore, C. B., Guthrie, E. H., Huang, M. T. H., & Taxman, D. J. (2010). Short hairpin RNA (shRNA): design, delivery, and assessment of gene knockdown. Methods in Molecular Biology (Clifton, N.J.), 629, 141–158. https://doi.org/10.1007/978-1-60761-657-3_10

Moss, D. J. H., Poulter, M., Beck, J., Hehir, J., Polke, J. M., Campbell, T., Adamson, G., Mudanohwo, E., Mccolgan, P., Haworth, A., Wild, E. J., Sweeney, M. G., Houlden, H., Mead, S., & Tabrizi, S. J. (2014). C9orf72 expansions are the most common genetic cause of Huntington disease phenocopies. www.neurology.org

Naso, M. F., Tomkowicz, B., Perry, W. L., & Strohl, W. R. (2017). Adeno-Associated Virus (AAV) as a Vector for Gene Therapy. In BioDrugs (Vol. 31, Issue 4, pp. 317–334). Springer International Publishing. https://doi.org/10.1007/s40259-017-0234-5

Olney, N. T., Spina, S., & Miller, B. L. (2017). Frontotemporal Dementia. In Neurologic Clinics (Vol. 35, Issue 2, pp. 339–374). W.B. Saunders. https://doi.org/10.1016/j.ncl.2017.01.008

Ormond, K. E., Mortlock, D. P., Scholes, D. T., Bombard, Y., Brody, L. C., Faucett, W. A., Garrison, N. A., Hercher, L., Isasi, R., Middleton, A., Musunuru, K., Shriner, D., Virani, A., & Young, C. E. (2017). Human Germline Genome Editing. In American Journal of Human Genetics (Vol. 101, Issue 2, pp. 167–176). Cell Press. https://doi.org/10.1016/j.ajhg.2017.06.012

Paul, B., & Montoya, G. (2020). CRISPR-Cas12a: Functional overview and applications. In Biomedical Journal (Vol. 43, Issue 1, pp. 8–17). Elsevier B.V. https://doi.org/10.1016/j.bj.2019.10.005

Perry, C., & Rayat, A. C. M. E. (2021). Lentiviral vector bioprocessing. Viruses, 13(2). https://doi.org/10.3390/v13020268

Piao, X., Meng, D., Zhang, X., Song, Q., Lv, H., & Jia, Y. (2022). Dual-gRNA approach with limited off-target effect corrects C9ORF72 repeat expansion in vivo. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-07746-8

Pickles, S., Zanetti Alepuz, D., Koike, Y., Yue, M., Tong, J., Liu, P., Zhou, Y., Jansen-West, K., Daughrity, L. M., Song, Y., DeTure, M., Oskarsson, B., Graff-Radford, N. R., Boeve, B. F., Petersen, R. C., Josephs, K. A., Dickson, D. W., Ward, M. E., Dong, L., … Petrucelli, L. (2023a). CRISPR interference to evaluate modifiers of C9ORF72-mediated toxicity in FTD. Frontiers in Cell and Developmental Biology, 11. https://doi.org/10.3389/fcell.2023.1251551

Pickles, S., Zanetti Alepuz, D., Koike, Y., Yue, M., Tong, J., Liu, P., Zhou, Y., Jansen-West, K., Daughrity, L. M., Song, Y., DeTure, M., Oskarsson, B., Graff-Radford, N. R., Boeve, B. F., Petersen, R. C., Josephs, K. A., Dickson, D. W., Ward, M. E., Dong, L., … Petrucelli, L. (2023b). CRISPR interference to evaluate modifiers of C9ORF72-mediated toxicity in FTD. Frontiers in Cell and Developmental Biology, 11. https://doi.org/10.3389/fcell.2023.1251551

Ran, F. A., Hsu, P. D., Lin, C. Y., Gootenberg, J. S., Konermann, S., Trevino, A. E., Scott, D. A., Inoue, A., Matoba, S., Zhang, Y., & Zhang, F. (2013). XDouble nicking by RNA-guided CRISPR cas9 for enhanced genome editing specificity. Cell, 154(6). https://doi.org/10.1016/j.cell.2013.08.021

Scioli Montoto, S., Muraca, G., & Ruiz, M. E. (2020). Solid Lipid Nanoparticles for Drug Delivery: Pharmacological and Biopharmaceutical Aspects. In Frontiers in Molecular Biosciences (Vol. 7). Frontiers Media S.A. https://doi.org/10.3389/fmolb.2020.587997

Shi, Y., Lin, S., Staats, K. A., Li, Y., Chang, W. H., Hung, S. T., Hendricks, E., Linares, G. R., Wang, Y., Son, E. Y., Wen, X., Kisler, K., Wilkinson, B., Menendez, L., Sugawara, T., Woolwine, P., Huang, M., Cowan, M. J., Ge, B., … Ichida, J. K. (2018). Haploinsufficiency leads to neurodegeneration in C9ORF72 ALS/FTD human induced motor neurons. Nature Medicine, 24(3), 313–325. https://doi.org/10.1038/nm.4490

Shinmyo, Y., Tanaka, S., Tsunoda, S., Hosomichi, K., Tajima, A., & Kawasaki, H. (2016). CRISPR/Cas9-mediated gene knockout in the mouse brain using in utero electroporation. Scientific Reports, 6. https://doi.org/10.1038/srep20611

Smeyers, J., Banchi, E. G., & Latouche, M. (2021). C9ORF72: What It Is, What It Does, and Why It Matters. In Frontiers in Cellular Neuroscience (Vol. 15). Frontiers Media S.A. https://doi.org/10.3389/fncel.2021.661447

Zou, Y., Sun, X., Yang, Q., Zheng, M., Shimoni, O., Ruan, W., Wang, Y., Zhang, D., Yin, J., Huang, X., Tao, W., Bae Park, J., Liang, X.-J., Leong, K. W., & Shi, B. (2022). Blood-brain barrier-penetrating single CRISPR-Cas9 nanocapsules for effective and safe glioblastoma gene therapy. In Sci. Adv (Vol. 8).

Published

05-31-2024

How to Cite

Haridas, A., & Guilz, D. N. (2024). CRISPR knockout of HRE sequences in the C9orf72 gene to treat ALS, FTD, and HDL2. Journal of Student Research, 13(2). https://doi.org/10.47611/jsrhs.v13i2.6589

Issue

Section

HS Review Articles