Understanding the effect of oAβ and oTau proteins on impaired LTP within Alzheimer’s Disease

Authors

  • Shantala Totada Liberal Arts & Science Academy (LASA) High School
  • Debra Abramov

DOI:

https://doi.org/10.47611/jsrhs.v13i1.6583

Keywords:

Neuroscience, Synaptic plasticity, Learning, Memory, LTP, LTD, Aβ, Tau, Oligomers, Alzheimer's Disease, NMDA

Abstract

Alzheimer’s Disease (AD) is associated with decreased memory recall, where synaptic plasticity is impaired between neurons. Synaptic plasticity is the ability to modify the strength or efficacy of synaptic transmission at synapses between neurons. One of the main forms of impaired synaptic plasticity includes long-term potentiation (LTP). Studies have shown that one of the main causes of the inhibiting LTP is through oligomeric amyloid-beta (oAβ) and oligomeric tau (oTau) proteins. oAβ was shown to impair glutamatergic synaptic transmission and subunit receptors including extrasynaptic NMDAR and NR2B respectively. Hippocampal slices were used and treated with CHO/7PA2 cells containing a V717F hAPP751 AD mutation. oAβ was found to inhibit the extrasynaptic NMDARs along with the NR2B antagonists and produce impaired LTP. Using the extrasynaptic NMDARs was shown to dephosphorylate CREB, impairing LTP, not only in oAβ but also in oTau. Additionally, oTau was shown to impair LTP through protein kinases GSK-3B and dephosphorylate tau through protein phosphatase PP2A, and oTau was able to impair LTP through tau isoform 4R/2N. Understanding the effect of oligomeric forms of protein aggregation within AD can help advance treatment development and use protein aggregation as a treatment.

Downloads

Download data is not yet available.

References or Bibliography

Acquarone, E., Argyrousi, E. K., Van Den Berg, M., Gulisano, W., Fà, M., Staniszewski, A., Calcagno, E., Zuccarello, E., D’Adamio, L., Deng, S. X., Puzzo, D., Arancio, O., & Fiorito, J. (2019). Synaptic and memory dysfunction induced by tau oligomers is rescued by up-regulation of the nitric oxide cascade. Molecular Neurodegeneration, 14(1). https://doi.org/10.1186/s13024-019-0326-4

Alavi Naini, S. M., & Soussi-Yanicostas, N. (2015). Tau Hyperphosphorylation and Oxidative Stress, a Critical Vicious Circle in Neurodegenerative Tauopathies? Oxidative Medicine and Cellular Longevity, 2015. https://doi.org/10.1155/2015/151979

Alzheimer’s Disease. (n.d.). Retrieved September 24, 2023, from https://medlineplus.gov/alzheimersdisease.html

Alzheimer’s disease - Symptoms and causes - Mayo Clinic. (n.d.). Retrieved September 24, 2023, from https://www.mayoclinic.org/diseases-conditions/alzheimers-disease/symptoms-causes/syc-2 0350447

Alzheimer’s Disease Fact Sheet | National Institute on Aging. (n.d.). Retrieved September 24, 2023, from https://www.nia.nih.gov/health/alzheimers-disease-fact-sheet

Bathina, S., & Das, U. N. (2015). Brain-derived neurotrophic factor and its clinical implications. Archives of Medical Science, 6, 1164–1178. https://doi.org/10.5114/aoms.2015.56342

Bejanin, A., Schonhaut, D. R., La Joie, R., Kramer, J. H., Baker, S. L., Sosa, N., Ayakta, N., Cantwell, A., Janabi, M., Lauriola, M., O’Neil, J. P., Gorno-Tempini, M. L., Miller, Z. A., Rosen, H. J., Miller, B. L., Jagust, W. J., & Rabinovici, G. D. (2017). Tau pathology and neurodegeneration contribute to cognitive impairment in Alzheimer’s disease. Brain, 140(12), 3286–3300. https://doi.org/10.1093/brain/awx243

Benarroch, E. E. (2018). Glutamatergic synaptic plasticity and dysfunction in Alzheimer's disease. Neurology, 91(3), 125–132. https://doi.org/10.1212/WNL.0000000000005807

Bode, D., Baker, M. D., & Viles, J. H. (2017). Ion channel formation by amyloid-Β42 oligomers but not amyloid-Β40 in cellular membranes. Journal of Biological Chemistry, 292(4), 1404–1413. https://doi.org/10.1074/jbc.m116.762526

Chen, G. F., Xu, T. H., Yan, Y., Zhou, Y. R., Jiang, Y., Melcher, K., & Xu, H. E. (2017). Amyloid beta: structure, biology, and structure-based therapeutic development. Acta Pharmacologica Sinica 2017 38:9, 38(9), 1205–1235. https://doi.org/10.1038/aps.2017.28

Chiu, D. N., & Carter, B. C. (2022). Synaptic NMDA receptor activity at resting membrane potentials. Frontiers in Cellular Neuroscience, 16. https://doi.org/10.3389/fncel.2022.916626

Chow, V. W., Mattson, M. P., Wong, P. C., & Gleichmann, M. (2010). An Overview of APP Processing Enzymes and Products. Neuromolecular Medicine, 12(1), 1. https://doi.org/10.1007/S12017-009-8104-Z

Citri, A., & Malenka, R. C. (2007). Synaptic Plasticity: Multiple Forms, Functions, and Mechanisms. Neuropsychopharmacology 2008 33:1, 33(1), 18–41. https://doi.org/10.1038/sj.npp.1301559

Contextual Memory, Cognitive Skill. (n.d.). Retrieved September 24, 2023, from https://www.cognifit.com/science/contextual-memory

Cooper, G. M. (2000). Microtubules. https://www.ncbi.nlm.nih.gov/books/NBK9932/

Cuestas Torres, D. M., & Cardenas, F. P. (2020). Synaptic plasticity in Alzheimer’s disease and healthy aging. Reviews in the Neurosciences, 31(3), 245–268. https://doi.org/10.1515/REVNEURO-2019-0058

Czech, D. A., & Stein, E. A. (1984). Bilateral cannula system for intracranial chemical microinjection in small animals. Pharmacology, Biochemistry, and Behavior, 20(5), 811–813. https://doi.org/10.1016/0091-3057(84)90205-3

Danysz, W., & Parsons, C. G. (2012). Alzheimer’s disease, β-amyloid, glutamate, NMDA receptors, and memantine – searching for the connections. British Journal of Pharmacology, 167(2), 324. https://doi.org/10.1111/J.1476-5381.2012.02057.X

Deutsch, S. I., Rosse, R. B., & Lakshman, R. M. (2006). Dysregulation of tau phosphorylation is a hypothesized point of convergence in the pathogenesis of Alzheimer’s disease, frontotemporal dementia, and schizophrenia with therapeutic implications. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 30(8), 1369–1380. https://doi.org/10.1016/J.PNPBP.2006.04.007

Fá, M., Puzzo, D., Piacentini, R., Staniszewski, A., Zhang, H., Baltrons, M. A., Li Puma, D. D., Chatterjee, I., Li, J., Saeed, F., Berman, H. L., Ripoli, C., Gulisano, W., Gonzalez, J., Tian, H., Costa, J. A., Lopez, P., Davidowitz, E., Yu, W. H., ... Arancio, O. (2016). Extracellular Tau Oligomers Produce An Immediate Impairment of LTP and Memory. Scientific Reports 2016 6:1, 6(1), 1–15. https://doi.org/10.1038/srep19393

Findley, C. A., Bartke, A., Hascup, K. N., & Hascup, E. R. (2019). Amyloid Beta-Related alterations to glutamate signaling dynamics during Alzheimer’s disease progression. ASN Neuro, 11, 175909141985554. https://doi.org/10.1177/1759091419855541

Francis, S. H., Busch, J. L., & Corbin, J. D. (2010). CGMP-Dependent protein kinases and CGMP phosphodiesterases in nitric oxide and CGMP action. Pharmacological Reviews, 62(3), 525–563. https://doi.org/10.1124/pr.110.002907

Frost, G., & Li, Y. (2017). The role of astrocytes in amyloid production and Alzheimer’s disease. Open Biology, 7(12), 170228. https://doi.org/10.1098/rsob.170228

Gralle, M., & Ferreira, S. T. (2007). Structure and functions of the human amyloid precursor protein: the whole is more than the sum of its parts. Progress in Neurobiology, 82(1), 11–32. https://doi.org/10.1016/J.PNEUROBIO.2007.02.001

Grochowska, K. M., Kaushik, R., Gomes, G. M., Raman, R., Bär, J., Bayraktar, G., Samer, S., Reyes-Resina, I., Spilker, C., Morawski, M., Rossner, S., Brugal, G. N., Karpova, A., & Kreutz, M. R. (2020, January 1). A molecular mechanism by which amyloid-β induces transcriptional inactivation of CREB in alzheimer’s disease. bioRxiv. https://www.biorxiv.org/content/10.1101/2020.01.08.898304v1.full

Guercio, G. D., & Panizzutti, R. (2018). Potential and Challenges for the Clinical Use of d-Serine As a Cognitive Enhancer. Frontiers in Psychiatry, 9(FEB). https://doi.org/10.3389/FPSYT.2018.00014

Hampel, H., Hardy, J., Blennow, K., Chen, C., Perry, G., Kim, S. H., Villemagne, V. L., Aisen, P., Vendruscolo, M., Iwatsubo, T., Masters, C. L., Cho, M., Lannfelt, L., Cummings, J. L., & Vergallo, A. (2021). The Amyloid-β Pathway in Alzheimer’s Disease. Molecular Psychiatry 2021 26:10, 26(10), 5481–5503. https://doi.org/10.1038/s41380-021-01249-0

Hardingham, G. E., Fukunaga, Y., & Bading, H. (2002). Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways. Nature Neuroscience, 5(5), 405–414. https://doi.org/10.1038/nn835

Hedges, V. (2022, December 15). Introduction to neuroscience. Pressbooks. https://openbooks.lib.msu.edu/introneuroscience1/

Hefter, D., Ludewig, S., Draguhn, A., & Korte, M. (2020). Amyloid, APP, and Electrical Activity of the Brain. Neuroscientist, 26(3), 231–251. https://doi.org/10.1177/1073858419882619

Hernández, A. (n.d.). The role of the hippocampus in navigation is memory. https://doi.org/10.1152/JN.00005.2017

Ittner, L. M., Ke, Y. D., Delerue, F., Bi, M., Gladbach, A., van Eersel, J., Wölfing, H., Chieng, B. C., Christie, M. J., Napier, I. A., Eckert, A., Staufenbiel, M., Hardeman, E., & Götz, J. (2010). Dendritic function of tau mediates amyloid-β toxicity in Alzheimer’s disease mouse models. Cell, 142(3), 387–397. https://doi.org/10.1016/j.cell.2010.06.036

Kanekiyo, T., Xu, H., & Bu, G. (2014). ApoE and Aβ in Alzheimer’s disease: accidental encounters or partners? Neuron, 81(4), 740. https://doi.org/10.1016/J.NEURON.2014.01.045

Kennedy, M. B. (2013). Synaptic signaling in learning and memory. Cold Spring Harbor Perspectives in Biology, 8(2), a016824. https://doi.org/10.1101/cshperspect.a016824

Kolarova, M., García-Sierra, F., Bartos, A., Ricny, J., & Ripova, D. (2012). Structure and Pathology of Tau Protein in Alzheimer Disease. International Journal of Alzheimer’s Disease, 2012, 13. https://doi.org/10.1155/2012/731526

Korb, E., & Finkbeiner, S. (2011). Arc in synaptic plasticity: from gene to behavior. Trends in Neurosciences, 34(11), 591–598. https://doi.org/10.1016/j.tins.2011.08.007

Kristensen, A. S., Jenkins, M. A., Banke, T. G., Schousboe, A., Makino, Y., Johnson, R. C., Huganir, R. L., & Traynelis, S. F. (2011). Mechanism of Ca2+/calmodulin-dependent kinase II regulation of AMPA receptor gating. Nature Neuroscience, 14(6), 727–735. https://doi.org/10.1038/nn.2804

Lazarevic, V., Fieńko, S., Andres-Alonso, M., Anni, D., Ivanova, D., Montenegro-Venegas, C., Gundelfinger, E. D., Cousin, M. A., & Fejtova, A. (2017). Physiological concentrations of amyloid beta regulate the recycling of synaptic vesicles via alpha7 acetylcholine receptor and CDK5/calcineurin signaling. Frontiers in Molecular Neuroscience, 10, 269667. https://doi.org/10.3389/FNMOL.2017.00221/BIBTEX

Lei, M., Xu, H., Li, Z., Wang, Z., O’Malley, T. T., Zhang, D., Walsh, D. M., Xu, P., Selkoe, D. J., & Li, S. (2016). Soluble Aβ Oligomers Impair Hippocampal LTP by Disrupting Glutamatergic/GABAergic Balance. Neurobiology of Disease, 85, 111. https://doi.org/10.1016/J.NBD.2015.10.019

Levin, E. D. (2012). ?7-Nicotinic receptors and cognition. Current Drug Targets, 13(5), 602–606. https://doi.org/10.2174/138945012800398937

Li, S., Hong, S., Shepardson, N. E., Walsh, D. M., Shankar, G. M., & Selkoe, D. J. (2009). Soluble Oligomers of Amyloid β Protein Facilitate Hippocampal Long-Term Depression by Disrupting Neuronal Glutamate Uptake. Neuron, 62(6), 788–801. https://doi.org/10.1016/j.neuron.2009.05.012

Li, S., Jin, M., Koeglsperger, T., Shepardson, N. E., Shankar, G. M., & Selkoe, D. J. (2011). Soluble Aβ Oligomers Inhibit Long-Term Potentiation through a Mechanism Involving Excessive Activation of Extrasynaptic NR2B-Containing NMDA Receptors. The Journal of Neuroscience, 31(18), 6627. https://doi.org/10.1523/JNEUROSCI.0203-11.2011

Loftis, J. M., & Janowsky, A. (2003). The N-methyl-d-aspartate receptor subunit NR2B: localization, functional properties, regulation, and clinical implications. Pharmacology & Therapeutics, 97(1), 55–85. https://doi.org/10.1016/s0163-7258(02)00302-9

Ma, T., & Klann, E. (2012). Amyloid β: Linking Synaptic Plasticity Failure to Memory Disruption in Alzheimer’s Disease. Journal of Neurochemistry, 120(Suppl 1), 140. https://doi.org/10.1111/J.1471-4159.2011.07506.X

Mazanetz, M. P., & Fischer, P. M. (2007). Untangling tau hyperphosphorylation in drug design for neurodegenerative diseases. Nature Reviews Drug Discovery 2007 6:6, 6(6), 464–479. https://doi.org/10.1038/nrd2111

Medeiros, R., Baglietto-Vargas, D., & Laferla, F. M. (2011). The Role of Tau in Alzheimer’s Disease and Related Disorders. CNS Neuroscience & Therapeutics, 17(5), 514. https://doi.org/10.1111/J.1755-5949.2010.00177.X

Microtubules: the basics | Learn Science at Scitable. (n.d.). Retrieved September 24, 2023, from https://www.nature.com/scitable/content/microtubules-the-basics-14673338/

Müller-Schiffmann, A., Herring, A., Abdel-Hafiz, L., Chepkova, A. N., Schäble, S., Wedel, D., Horn, A. H. C., Sticht, H., De Souza Silva, M. A., Gottmann, K., Sergeeva, O. A., Huston, J. P., Keyvani, K., & Korth, C. (2016). Amyloid-β dimers in the absence of plaque pathology impair learning and synaptic plasticity. Brain : A Journal of Neurology, 139(Pt 2), 509–525. https://doi.org/10.1093/BRAIN/AWV355

Nowakowski, A., Wobig, W. J., & Petering, D. H. (2014). Native SDS-PAGE: high resolution electrophoretic separation of proteins with retention of native properties including bound metal ions. Metallomics, 6(5), 1068–1078. https://doi.org/10.1039/c4mt00033a

Odagiu, L., May, J., Boulet, S., Baldwin, T. A., & Labrecque, N. (2021). Role of the orphan nuclear receptor NR4A family in T-Cell biology. Frontiers in Endocrinology, 11. https://doi.org/10.3389/fendo.2020.624122

Pause, B. M., Zlomuzica, A., Kinugawa, K., Mariani, J., Pietrowsky, R., & Dere, E. (2013). Perspectives on episodic-like and episodic memory. Frontiers in Behavioral Neuroscience, 7(APR 2013), 47811. https://doi.org/10.3389/FNBEH.2013.00033/BIBTEX

Robbins, M., Clayton, E., & Kaminski Schierle, G. S. (2021). Synaptic tau: A pathological or physiological phenomenon? Acta Neuropathologica Communications 2021 9:1, 9(1), 1–30. https://doi.org/10.1186/S40478-021-01246-Y

Shaked, G. M., Kummer, M. P., Lu, D. C., Galván, V., Bredesen, D. E., & Koo, E. H. (2006). Aβ induces cell death by direct interaction with its cognate extracellular domain on APP (APP 597–624). The FASEB Journal, 20(8), 1254–1256. https://doi.org/10.1096/fj.05-5032fje

Shankar, G. M., Li, S., Mehta, T. H., Garcia-Munoz, A., Shepardson, N. E., Smith, I., Brett, F. M., Farrell, M. A., Rowan, M. J., Lemere, C. A., Regan, C. M., Walsh, D. M., Sabatini, B. L., & Selkoe, D. J. (2008). Amyloid β-Protein Dimers Isolated Directly from Alzheimer Brains Impair Synaptic Plasticity and Memory. Nature Medicine, 14(8), 837. https://doi.org/10.1038/NM1782

Silva, M. V. F., Loures, C. D. M. G., Alves, L. C. V., De Souza, L. C., Borges, K. B. G., & Carvalho, M. D. G. (2019). Alzheimer’s disease: risk factors and potentially protective measures. Journal of Biomedical Science, 26(1). https://doi.org/10.1186/S12929-019-0524-Y

Soderling, T. R., Chang, B., & Brickey, D. (2001). Cellular Signaling through Multifunctional Ca 2+/Calmodulin-dependent Protein Kinase II. Journal of Biological Chemistry, 276(6), 3719–3722. https://doi.org/10.1074/JBC.R000013200

Südhof, T. C. (2004). The synaptic vesicle cycle. Annual Review of Neuroscience, 27, 509–547. https://doi.org/10.1146/ANNUREV.NEURO.26.041002.131412

Sumi, T., & Harada, K. (2020). Mechanism underlying hippocampal long-term potentiation and depression based on competition between endocytosis and exocytosis of AMPA receptors. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-71528-3

Tang, Z., Ioja, E., Bereczki, E., Hultenby, K., Li, C., Guan, Z., Winblad, B., & Pei, J. J. (2015). mTOR mediates tau localization and secretion: Implication for Alzheimer’s disease. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1853(7), 1646–1657. https://doi.org/10.1016/J.BBAMCR.2015.03.003

Tolar, M., Hey, J. A., Power, A., & Abushakra, S. (2021). Neurotoxic soluble amyloid oligomers drive Alzheimer’s pathogenesis and represent a clinically validated target for slowing disease progression. International Journal of Molecular Sciences, 22(12), 6355. https://doi.org/10.3390/ijms22126355

Tully, T., Bourtchouladze, R., Scott, R., & Tallman, J. F. (2003). Targeting the CREB pathway for memory enhancers. Nature Reviews Drug Discovery, 2(4), 267–277. https://doi.org/10.1038/nrd1061

Wainaina, M. N., Chen, Z., & Zhong, C. (2014). Environmental factors in the development and progression of late-onset Alzheimer’s disease. Neuroscience Bulletin, 30(2), 253–270. https://doi.org/10.1007/S12264-013-1425-9

Walsh, D. M., Townsend, M., Podlisny, M. B., Shankar, G. M., Fadeeva, J. V., El Agnaf, O., Hartley, D. M., & Selkoe, D. J. (2005). Certain Inhibitors of Synthetic Amyloid β-Peptide (Aβ) Fibrillogenesis Block Oligomerization of Natural Aβ and Thereby Rescue Long-Term Potentiation. The Journal of Neuroscience, 25(10), 2455. https://doi.org/10.1523/JNEUROSCI.4391-04.2005

What is Neurodegeneration? (n.d.). Retrieved September 24, 2023, from https://www.news-medical.net/health/What-is-Neurodegeneration.aspx

Zárraga-Granados, G., Muciño-Hernández, G., Sánchez-Carbente, M. R., Villamizar-Gálvez, W., Peñas-Rincón, A., Arredondo, C., Andrés, M. E., Wood, C. D., Covarrubias, L., & Castro-Obregón, S. (2020). The nuclear receptor NR4A1 is regulated by SUMO modification to induce autophagic cell death. PLOS ONE, 15(3), e0222072. https://doi.org/10.1371/journal.pone.0222072rr

Zhang, H., Jiang, X., Ma, L., Wei, W., Li, Z., Chang, S., Wen, J., Sun, J., & Li, H. (2022). Role of Aβ in Alzheimer’s-related synaptic dysfunction. Frontiers in Cell and Developmental Biology, 10. https://doi.org/10.3389/fcell.2022.964075

Zhao, M., Toyoda, H., Lee, Y. S., Wu, L., Ko, S. W., Zhang, X. H., Jia, Y., Shum, F., Xu, H., Li, B. M., Kaang, B. K., & Zhuo, M. (2005). Roles of NMDA NR2B subtype receptor in prefrontal Long-Term potentiation and contextual fear memory. Neuron, 47(6), 859–872. https://doi.org/10.1016/j.neuron.2005.08.014

Zhuo, M. (2009). Plasticity of NMDA receptor NR2B subunit in memory and chronic pain. Molecular Brain, 2(1), 1–11. https://doi.org/10.1186/1756-6606-2-4/FIGURES/4

Zvěřová, M. (2019). Clinical aspects of Alzheimer’s disease. Clinical Biochemistry, 72, 3–6. https://doi.org/10.1016/j.clinbiochem.2019.04.015

Published

02-29-2024

How to Cite

Totada, S., & Abramov, D. (2024). Understanding the effect of oAβ and oTau proteins on impaired LTP within Alzheimer’s Disease . Journal of Student Research, 13(1). https://doi.org/10.47611/jsrhs.v13i1.6583

Issue

Section

HS Review Articles