The Epigenetics of Cocaine Addiction: An Analysis of D1 and D2 Dopamine Receptor-Expressing Neurons

Authors

  • Daniel Lee Fieldston School

DOI:

https://doi.org/10.47611/jsrhs.v13i1.6539

Keywords:

Epigenetics, Drug Addiction, Cocaine, Multiomics

Abstract

Cocaine addiction is one of the most common substance use disorders worldwide. Currently, there are no medications approved by the U.S. Food and Drug Administration to treat cocaine addiction. Repeated exposure to cocaine induces long-term changes in the brain, resulting in increased displeasure and negative moods when not taking the drug. Cocaine abuse causes persistent plasticity, altering the composition and levels of membrane receptors involved in neuronal signaling pathways. This leads to long-term, stable changes in synaptic connectivity and strength in the dopaminergic system, particularly involving the D1 and D2 Dopamine Receptor-Expressing Neurons [DRD1 and DRD2]. These two cell types comprise 95% of the NAc, a key node of the brain’s reward circuitry whose role is to translate motivation into action. Previously, there have been limited systematic or quantitative studies on the differences in structure between DRD1 and DRD2 neurons in the context of drug addiction. This paper mapped out the 3D structure of the DRD1 and DRD2 genome, identified the regions most affected by the epigenetic mechanisms of cocaine treatment, and quantified the subsequent changes in gene expression. Future experiments and studies can expand upon the results from this research to target specific regions of chromatin in DRD1 and DRD2 neurons in order to reverse the effects of cocaine abuse.

Downloads

Download data is not yet available.

References or Bibliography

Arima Genomics. (2019, October). Arima-HiC Kit. https://arimagenomics.com/wp-content/files/User-Guide-Arima-HiC-for-Animal-Tissues.pdf

Arima Genomics. (2021, November). Arima High Coverage HiC Kit. https://arimagenomics.com/wp-content/files/User-Guide-Arima-High-Coverage-for-Mammalian-Cell-Lines.pdf

Arima Genomics. (2023, May). Arima Library Prep Module. https://arimagenomics.com/wp-content/files/User-Guide-Library-Preparation-using-Arima-Library-Prep-Kit.pdf

Browne, C.J., Mews, P., Zhou, X., Holt. L.M., Estill, M., Futamura, R., Schaefer, A., Kenny, P.J., Hurd, Y.L., Shen, L., Zhang, B., Nestler, E.J. (2023). Shared and divergent transcriptomic regulation in nucleus accumbens D1 and D2 medium spiny neurons by cocaine and morphine. bioRxiv [Preprint]. https://doi.org/10.1101/2023.09.19.558477

Centers for Disease Control and Prevention. (2020). Underlying Cause of Death, 1999-2020 Request. https://wonder.cdc.gov/ucd-icd10.html

Counotte, D. S., Schiefer, C., Shaham, Y., & O’Donnell, P. (2013). Time-dependent decreases in nucleus accumbens AMPA/NMDA ratio and incubation of sucrose craving in adolescent and adult rats. Psychopharmacology, 231(8), 1675–1684. https://doi.org/10.1007/s00213-013-3294-3

Eagle, D. M., Wong, J. C. K., Allan, M. E., Mar, A. C., Theobald, D. E., & Robbins, T. W. (2011). Contrasting Roles for Dopamine D1 and D2 Receptor Subtypes in the Dorsomedial Striatum but Not the Nucleus Accumbens Core during Behavioral Inhibition in the Stop-Signal Task in Rats. The Journal of Neuroscience, 31(20), 7349–7356. https://doi.org/10.1523/jneurosci.6182-10.2011

Encyclopedia of DNA Elements. (2018, July 16). Data Production and Processing Standard of the Hi-C Mapping Center. https://www.encodeproject.org/documents/75926e4b-77aa-4959-8ca7-87efcba39d79/@@download/attachment/comp_doc_7july2018_final.pdf

Godino, A., Salery, M., Durand-de Cuttoli, R., Estill, M. S., Holt, L. M., Futamura, R., Browne, C. J., Mews, P., Hamilton, P. J., Neve, R. L., Shen, L., Russo, S. J., & Nestler, E. J. (2023). Transcriptional control of nucleus accumbens neuronal excitability by retinoid X receptor alpha tunes sensitivity to drug rewards. Neuron, 111(9), 1453–1467.e7. https://doi.org/10.1016/j.neuron.2023.02.013

Grubert, F., Srivas, R., Spacek, D. V., Kasowski, M., Ruiz-Velasco, M., Sinnott-Armstrong, N., Greenside, P. G., Narasimha, A., Liu, Q., Geller, B., Sanghi, A., Kulik, M., Sa, S., Rabinovitch, M., Kundaje, A., Dalton, S., Zaugg, J. B., & Snyder, M. (2020). Landscape of cohesin-mediated chromatin loops in the human genome. Nature, 583(7818), 737–743. https://doi.org/10.1038/s41586-020-2151-x

Hansen, A. S., Cattoglio, C., Darzacq, X., & Tjian, R. (2017). Recent evidence that TADs and chromatin loops are dynamic structures. Nucleus, 9(1), 20–32. https://doi.org/10.1080/19491034.2017.1389365

Kadauke, S. & Blobel, G. A. (2009). Chromatin Loops in Gene Regulation. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, 1789(1), 17–25. https://doi.org/10.1016/j.bbagrm.2008.07.002

Lin, D., Sanders, J., & Noble., W. S. (2021). HiCRep.py: fast comparison of Hi-C contact matrices in Python. Bioinformatics, 37(18), 2996–2997. https://doi.org/10.1093/bioinformatics/btab097

Mews, P., Walker, D. M., & Nestler, E. J. (2018). Epigenetic Priming in Drug Addiction. Cold Spring Harbor Symposia on Quantitative Biology, 83, 131–139. https://doi.org/10.1101/sqb.2018.83.037663

National Institute on Drug Abuse (2021, July 9). What are the long-term effects of cocaine use?.

https://nida.nih.gov/publications/research-reports/cocaine/what-are-long-term-effects-cocaine-use

New England BioLabs. (2022). NEBNext Ultra II DNA Library Prep Kit for Illumina. https://www.neb.com/en-us/-/media/nebus/files/manuals/manuale7103-e7645.pdf?rev=de09eaf8fcdf45e0ac8a66bf6fee75fb&hash=346DB0B0FD1203244DC01FBEAFA2D259

Soares‐Cunha, C., Coimbra, B., Domingues, A. V., Vasconcelos, N., Sousa, N., & Rodrigues, A. J. (2018). Nucleus Accumbens Microcircuit Underlying D2-MSN-Driven Increase in Motivation. ENeuro, 5(2), ENEURO.0386-18.2018. https://doi.org/10.1523/eneuro.0386-18.2018

Venton, B. J., Seipel, A. T., Phillips, P. E., Wetsel, W. C., Gitler, D., Greengard, P., Augustine, G. J., & Wightman, R. M. (2006). Cocaine increases dopamine release by mobilization of a synapsin-dependent reserve pool. The Journal of Neuroscience, 26(12), 3206–3209. https://doi.org/10.1523/JNEUROSCI.4901-04.2006

Published

02-29-2024

How to Cite

Lee, D. (2024). The Epigenetics of Cocaine Addiction: An Analysis of D1 and D2 Dopamine Receptor-Expressing Neurons. Journal of Student Research, 13(1). https://doi.org/10.47611/jsrhs.v13i1.6539

Issue

Section

HS Research Projects