The Implementation of Artificial Intelligence in Breast Cancer Screening

Authors

  • Abigail Jin Stuyvesant
  • Diana Tosato

DOI:

https://doi.org/10.47611/jsrhs.v13i2.6530

Keywords:

artificial intelligence, breast cancer, screening

Abstract

Breast cancer screening is traditionally administered by radiologists through mammography. Most women should be receiving mammograms once they reach their 40s to detect any signs of cancer early, especially those with high risk. Recently, the development of AI in medicine has proven to be useful in several fields, one of which is breast cancer screening. This literature review looks into the current status of AI in this field and evaluates different models of different types that could contribute to diagnosing breast cancer. The methodology used was searching key terms on the database PubMed, and then compiling and organizing papers into a table that highlighted similar results, which were summarized and analyzed. It was found that AI has the potential to be an accessible option. Deep learning, in particular, has seen the most experimentation. The advantages of using this technology include using it as a complementary tool for double reading, improving the time efficiency for the radiologists without losing accuracy, and its inclusivity throughout all populations. However, there are still limitations because many proposals themselves discuss the work that needs to be done before they can be generalized. External validation studies haven’t yielded ideal results, exposing the complications of using AI. Ethics of using this technology are also important to consider because AI is replacing human tasks. Implementing AI in a prominent role in breast cancer screening should take more examination, but promising developments have already set the framework.

Downloads

Download data is not yet available.

References or Bibliography

References

Abel, F., Landsmann, A., Hejduk, P., Ruppert, C., Borkowski, K., Ciritsis, A., Rossi, C., & Boss, A. (2022). Diagnostics | Free Full-Text | Detecting Abnormal Axillary Lymph Nodes on Mammograms Using a Deep Convolutional Neural Network. https://www.mdpi.com/2075-4418/12/6/1347

Aguilar, C., Pacilè, S., Weber, N., & Fillard, P. (2022). Life | Free Full-Text | Monitoring Methodology for an AI Tool for Breast Cancer Screening Deployed in Clinical Centers. https://www.mdpi.com/2075-1729/13/2/440

Anderson, A. W., Marinovich, M. L., Houssami, N., Lowry, K. P., Elmore, J. G., Buist, D. S. M., Hofvind, S., & Lee, C. I. (2022). Independent External Validation of Artificial Intelligence Algorithms for Automated Interpretation of Screening Mammography: A Systematic Review—Journal of the American College of Radiology. https://www.jacr.org/article/S1546-1440(21)01023-1/fulltext

Arce, S., Vijay, A., Yim, E., Spiguel, L. R., & Hanna, M. (2023). Cureus | Evaluation of an Artificial Intelligence System for Detection of Invasive Lobular Carcinoma on Digital Mammography. https://www.cureus.com/articles/144590-evaluation-of-an-artificial-intelligence-system-for-detection-of-invasive-lobular-carcinoma-on-digital-mammography#!/

Bao, C., Shen, J., Zhang, Y., Zheng, Y., Wei, W., Wang, Z., Ding, J., & Han. (2022). Evaluation of an artificial intelligence support system for breast cancer screening in Chinese people based on mammogram—Bao—2023—Cancer Medicine—Wiley Online Library. https://onlinelibrary.wiley.com/doi/10.1002/cam4.5231

Bhattacharya, S., Sharma, N., & Singh, A. (2019). Designing culturally acceptable screening for breast cancer through artificial intelligence-two case studies. Journal of Family Medicine and Primary Care, 8(2), 760. https://doi.org/10.4103/jfmpc.jfmpc_391_18

Bobowicz, M., Rygusik, M., Buler, J., Buler, R., Ferlin, M., Kwasigroch, A., Szurowska, E., & Grochowski, M. (2023). Cancers | Free Full-Text | Attention-Based Deep Learning System for Classification of Breast Lesions—Multimodal, Weakly Supervised Approach. https://doi.org/10.3390/cancers15102704

Briganti, G. (2023). Intelligence artificielle: Une introduction pour les cliniciens. Revue Des Maladies Respiratoires, 40(4), 308–313. https://doi.org/10.1016/j.rmr.2023.02.005

Buda, M., Saha, A., Walsh, R., Ghate, S., Li, N., Święcicki, A., Lo, J. Y., & Mazurowski, M. A. (2021). A Data Set and Deep Learning Algorithm for the Detection of Masses and Architectural Distortions in Digital Breast Tomosynthesis Images. JAMA Network Open, 4(8), e2119100. https://doi.org/10.1001/jamanetworkopen.2021.19100

Byng, D., Strauch, B., Gnas, L., Leibig, C., Stephan, O., Bunk, S., & Hecht, G. (2022). AI-based prevention of interval cancers in a national mammography screening program—European Journal of Radiology. https://www.ejradiology.com/article/S0720-048X(22)00171-1/fulltext

Caballo, M., Pangallo, D. R., Mann, R. M., & Sechopoulos, I. (2020). Deep learning-based segmentation of breast masses in dedicated breast CT imaging: Radiomic feature stability between radiologists and artificial intelligence—ScienceDirect. https://www.sciencedirect.com/science/article/pii/S0010482520300287?via%3Dihub#sec5

Carter, S. M., Rogers, W., Win, K. T., Frazer, H., Richards, B., & Houssami, N. (2019). The ethical, legal and social implications of using artificial intelligence systems in breast cancer care—The Breast. https://www.thebreastonline.com/article/S0960-9776(19)30564-8/fulltext

Cascella, M., Montomoli, J., Bellini, V., & Bignami, E. (2023). Evaluating the Feasibility of ChatGPT in Healthcare: An Analysis of Multiple Clinical and Research Scenarios. Journal of Medical Systems, 47(1), 33. https://doi.org/10.1007/s10916-023-01925-4

Chen, J., Jiang, Y., Yang, K., Ye, X., Cui, C., Shi, S., Wu, H., Tian, H., Song, D., Yao, J., Wang, L., Huang, S., Xu, J., Xu, D., & Dong, F. (2023). Feasibility of using AI to auto-catch responsible frames in ultrasound screening for breast cancer diagnosis. iScience, 26(1). https://doi.org/10.1016/j.isci.2022.105692

Chen, J.-L., Cheng, L.-H., Wang, J., Hsu, T.-W., Chen, C.-Y., Tseng, L.-M., & Guo. (2023). A YOLO-based AI system for classifying calcifications on spot magnification mammograms | BioMedical Engineering OnLine | Full Text. https://biomedical-engineering-online.biomedcentral.com/articles/10.1186/s12938-023-01115-w

Cushnan, D., Young, K. C., Ward, D., Halling-Brown, M. D., Duffy, S., Given-Wilson, R., Wallis, M. G., Wilkinson, L., Lyburn, I., Sidebottom, R., McAvinchey, R., Lewis, E. B., Mackenzie, A., & Warren. (2023). Lessons learned from independent external validation of an AI tool to detect breast cancer using a representative UK data set. https://www.birpublications.org/doi/10.1259/bjr.20211104#_i20

Dahlblom, V., Dustler, M., Tingberg, A., & Zackrisson, S. (2023). Breast cancer screening with digital breast tomosynthesis: Comparison of different reading strategies implementing artificial intelligence. European Radiology, 33(5), 3754–3765. https://doi.org/10.1007/s00330-022-09316-y

Dang, L.-A., Chazard, E., Poncelet, E., Serb, T., Rusu, A., Pauwels, X., Parsy, C., Poclet, T., Cauliez, H., Engelaere, C., Ramette, G., Brienne, C., Dujardin, S., & Laurent, N. (2022). Impact of artificial intelligence in breast cancer screening with mammography. Breast Cancer, 29(6), 967–977. https://doi.org/10.1007/s12282-022-01375-9

Davalagi, S. B., Palicheralu, B. S., Murthy, S. S. N., & Hurlihal, S. (2022). Acceptance of artificial intelligence (AI)-based screening for breast health in urban slums of central Karnataka, India – SWOC analysis. Journal of Family Medicine and Primary Care, 11(10), 6023–6028. https://doi.org/10.4103/jfmpc.jfmpc_143_22

Dembrower, K., Wåhlin, E., Liu, Y., Salim, M., Smith, K., Lindholm, P., Eklund, M., & Strand, F. (2020). Effect of artificial intelligence-based triaging of breast cancer screening mammograms on cancer detection and radiologist workload: A retrospective simulation study. The Lancet Digital Health, 2(9), e468–e474. https://doi.org/10.1016/S2589-7500(20)30185-0

Duggento, A., Aiello, M., Cavaliere, C., Cascella, G. L., Cascella, D., Conte, G., Guerrisi, M., & Toschi, N. (2019). An Ad Hoc Random Initialization Deep Neural Network Architecture for Discriminating Malignant Breast Cancer Lesions in Mammographic Images. Contrast Media & Molecular Imaging, 2019, e5982834. https://doi.org/10.1155/2019/5982834

Eriksson, M., Czene, K., Vachon, C., Conant, E. F., & Hall, P. (2023). Cancers | Free Full-Text | A Clinical Risk Model for Personalized Screening and Prevention of Breast Cancer. https://doi.org/10.3390/cancers15123246

Frazer, H. M., Qin, A. K., Pan, H., & Brotchie, P. (2021). Evaluation of deep learning-based artificial intelligence techniques for breast cancer detection on mammograms: Results from a retrospective study using a BreastScreen Victoria dataset. Journal of Medical Imaging and Radiation Oncology, 65(5), 529–537. https://doi.org/10.1111/1754-9485.13278

Freeman, K., Geppert, J., Stinton, C., Todkill, D., Johnson, S., Clarke, A., & Taylor-Phillips, S. (2021). Use of artificial intelligence for image analysis in breast cancer screening programmes: Systematic review of test accuracy. BMJ, 374, n1872. https://doi.org/10.1136/bmj.n1872

Gastounioti, A., Eriksson, M., Cohen, E. A., Mankowski, W., Pantalone, L., Ehsan, S., McCarthy, A. M., Kontos, D., Hall, P., & Conant, E. F. (2022). External Validation of a Mammography-Derived AI-Based Risk Model in a U.S. Breast Cancer Screening Cohort of White and Black Women. Cancers, 14(19), Article 19. https://doi.org/10.3390/cancers14194803

Giaquinto, A. N., Sung, H., Miller, K. D., Kramer, J. L., Newman, L. A., Minihan, A., Jemal, A., & Siegel, R. L. (2022). Breast Cancer Statistics, 2022. CA: A Cancer Journal for Clinicians, 72(6), 524–541. https://doi.org/10.3322/caac.21754

Haddad, T., Helgeson, J. M., Pomerleau, K. E., Preininger, A. M., Roebuck, M. C., Dankwa-Mullan, I., Jackson, G. P., & Goetz, M. P. (2021). Accuracy of an Artificial Intelligence System for Cancer Clinical Trial Eligibility Screening: Retrospective Pilot Study. JMIR Medical Informatics, 9(3), e27767. https://doi.org/10.2196/27767

Haji Maghsoudi, O., Gastounioti, A., Scott, C., Pantalone, L., Wu, F.-F., Cohen, E. A., Winham, S., Conant, E. F., Vachon, C., & Kontos, D. (2021). Deep-LIBRA: An artificial-intelligence method for robust quantification of breast density with independent validation in breast cancer risk assessment. Medical Image Analysis, 73, 102138. https://doi.org/10.1016/j.media.2021.102138

Hanis, T. M., Ruhaiyem, N. I. R., Arifin, W. N., Haron, J., Rahman, W. F. W. A., Abdullah, R., & Musa, K. I. (2022). Diagnostics | Free Full-Text | Over-the-Counter Breast Cancer Classification Using Machine Learning and Patient Registration Records. https://www.mdpi.com/2075-4418/12/11/2826

Högberg, C., Larsson, S., & Lång, K. (2023). Anticipating artificial intelligence in mammography screening: Views of Swedish breast radiologists | BMJ Health & Care Informatics. https://informatics.bmj.com/content/30/1/e100712

Hsu, W., Hippe, D. S., Nakhaei, N., Wang, P.-C., Zhu, B., Siu, N., Ahsen, M. E., Lotter, W., Sorensen, A. G., Naeim, A., Buist, D. S. M., Schaffter, T., Guinney, J., Elmore, J. G., & Lee, C. I. (2022). External Validation of an Ensemble Model for Automated Mammography Interpretation by Artificial Intelligence. JAMA Network Open, 5(11), e2242343. https://doi.org/10.1001/jamanetworkopen.2022.42343

Huang, X., Qiu, Y., Bao, F., Wang, J., Lin, C., Lin, Y., Wu, J., & Yang, H. (2023). Frontiers | Artificial intelligence breast ultrasound and handheld ultrasound in the BI-RADS categorization of breast lesions: A pilot head to head comparison study in screening program. https://www.frontiersin.org/articles/10.3389/fpubh.2022.1098639/full

Johansson, G., Olsson, C., Smith, F., Edegran, M., & Björk-Eriksson, T. (2021). AI-aided detection of malignant lesions in mammography screening – evaluation of a program in clinical practice. https://www.birpublications.org/doi/10.1259/bjro.20200063

Jonmarker, O., Strand, F., Brandberg, Y., & Lindholm. (2019). The future of breast cancer screening: What do participants in a breast cancer screening program think about automation using artificial intelligence? - Olof Jonmarker, Fredrik Strand, Yvonne Brandberg, Peter Lindholm, 2019. https://journals.sagepub.com/doi/10.1177/2058460119880315

Kakileti, S. T., Madhu, H. J., Krishnan, L., Manjunath, G., Sampangi, S., & Ramprakash, H. V. (2020). Observational Study to Evaluate the Clinical Efficacy of Thermalytix for Detecting Breast Cancer in Symptomatic and Asymptomatic Women. JCO Global Oncology, 6, 1472–1480. https://doi.org/10.1200/GO.20.00168

Kerschke, L., Weigel, S., Rodriguez-Ruiz, A., Karssemeijer, N., & Heindel, W. (2022). Using deep learning to assist readers during the arbitration process: A lesion-based retrospective evaluation of breast cancer screening performance. European Radiology, 32(2), 842–852. https://doi.org/10.1007/s00330-021-08217-w

Kim, H.-E., Kim, H. H., Han, B.-K., Kim, K. H., Han, K., Nam, H., Lee, E. H., & Kim, E.-K. (2020). Changes in cancer detection and false-positive recall in mammography using artificial intelligence: A retrospective, multireader study. The Lancet Digital Health, 2(3), e138–e148. https://doi.org/10.1016/S2589-7500(20)30003-0

Kim, Y. S., Jang, M., Lee, S. H., Kim, S.-Y., Ha, S. M., Kwon, B. R., Moon, W. K., & Chang, J. M. (2022). Use of Artificial Intelligence for Reducing Unnecessary Recalls at Screening Mammography: A Simulation Study. Korean Journal of Radiology, 23(12), 1241–1250. https://doi.org/10.3348/kjr.2022.0263

Kizildag Yirgin, I., Koyluoglu, Y. O., Seker, M. E., Ozkan Gurdal, S., Ozaydin, A. N., Ozcinar, B., Cabioğlu, N., Ozmen, V., & Aribal, E. (2022). Diagnostic Performance of AI for Cancers Registered in A Mammography Screening Program: A Retrospective Analysis. Technology in Cancer Research & Treatment, 21, 15330338221075172. https://doi.org/10.1177/15330338221075172

Koch, H. W., Larsen, M., Bartsch, H., Kurz, K. D., & Hofvind, S. (2023). Artificial intelligence in BreastScreen Norway: A retrospective analysis of a cancer-enriched sample including 1254 breast cancer cases. European Radiology, 33(5), 3735–3743. https://doi.org/10.1007/s00330-023-09461-y

Lång, K., Dustler, M., Dahlblom, V., Åkesson, A., Andersson, I., & Zackrisson, S. (2021). Identifying normal mammograms in a large screening population using artificial intelligence. European Radiology, 31(3), 1687–1692. https://doi.org/10.1007/s00330-020-07165-1

Lång, K., Hofvind, S., Rodríguez-Ruiz, A., & Andersson, I. (2021). Can artificial intelligence reduce the interval cancer rate in mammography screening? European Radiology, 31(8), 5940–5947. https://doi.org/10.1007/s00330-021-07686-3

Larsen, M., Aglen, C. F., Hoff, S. R., Lund-Hanssen, H., & Hofvind, S. (2022). Possible strategies for use of artificial intelligence in screen-reading of mammograms, based on retrospective data from 122,969 screening examinations. European Radiology, 32(12), 8238–8246. https://doi.org/10.1007/s00330-022-08909-x

Larsen, M., Aglen, C. F., Lee, C. I., Hoff, S. R., Lund-Hanssen, H., Lång, K., Nygård, J. F., Ursin, G., & Hofvind, S. (2022). Artificial Intelligence Evaluation of 122 969 Mammography Examinations from a Population-based Screening Program | Radiology. https://pubs.rsna.org/doi/full/10.1148/radiol.212381

Lee, C. I., Houssami, N., Elmore, J. G., & Buist, D. S. M. (2020). Pathways to breast cancer screening artificial intelligence algorithm validation. The Breast, 52, 146–149. https://doi.org/10.1016/j.breast.2019.09.005

Lee, J. H., Kim, K. H., Lee, E. H., Ahn, J. S., Ryu, J. K., Park, Y. M., Shin, G. W., Kim, Y. J., & Choi, H. Y. (2022). Improving the Performance of Radiologists Using Artificial Intelligence-Based Detection Support Software for Mammography: A Multi-Reader Study. Korean Journal of Radiology, 23(5), 505–516. https://doi.org/10.3348/kjr.2021.0476

Leibig, C., Brehmer, M., Bunk, S., Byng, D., Pinker, K., & Umutlu. (2022). Combining the strengths of radiologists and AI for breast cancer screening: A retrospective analysis—The Lancet Digital Health. https://www.thelancet.com/journals/landig/article/PIIS2589-7500(22)00070-X/fulltext

Leong, Y. S., Hasikin, K., Lai, K. W., Mohd Zain, N., & Azizan, M. M. (2022). Microcalcification Discrimination in Mammography Using Deep Convolutional Neural Network: Towards Rapid and Early Breast Cancer Diagnosis. Frontiers in Public Health, 10. https://www.frontiersin.org/articles/10.3389/fpubh.2022.875305

Li, H., Robinson, K., Lan, L., Baughan, N., Chan, C.-W., Embury, M., Whitman, G. J., El-Zein, R., Bedrosian, I., & Giger, M. L. (2023). Temporal Machine Learning Analysis of Prior Mammograms for Breast Cancer Risk Prediction. Cancers, 15(7), Article 7. https://doi.org/10.3390/cancers15072141

Liao, J., Gui, Y., Li, Z., Deng, Z., Han, X., Tian, H., Cai, L., Liu, X., Tang, C., Liu, J., Wei, Y., Hu, L., Niu, F., Liu, J., Yang, X., Li, S., Cui, X., Wu, X., Chen, Q., … Chen, L. (2023). Artificial intelligence-assisted ultrasound image analysis to discriminate early breast cancer in Chinese population: A retrospective, multicentre, cohort study. eClinicalMedicine, 60. https://doi.org/10.1016/j.eclinm.2023.102001

Ma, H., Tian, R., Li, H., Sun, H., Lu, G., Liu, R., & Wang, Z. (2021). Fus2Net: A novel Convolutional Neural Network for classification of benign and malignant breast tumor in ultrasound images | BioMedical Engineering OnLine | Full Text. https://biomedical-engineering-online.biomedcentral.com/articles/10.1186/s12938-021-00950-z

Mansour, S., Kamal, R., Hasherm, L., & AlKalaawy, B. (2021). Can artificial intelligence replace ultrasound as a complementary tool to mammogram for the diagnosis of the breast cancer? https://www.birpublications.org/doi/10.1259/bjr.20210820

Marinovich, M. L., Wylie, E., Lotter, W., Lund, H., Waddell, A., Madeley, C., Pereira, G., & Houssami, N. (2023). Artificial intelligence (AI) for breast cancer screening: BreastScreen population-based cohort study of cancer detection. eBioMedicine, 90. https://doi.org/10.1016/j.ebiom.2023.104498

Martín-Del-Campo-Mena, E., Sánchez-Méndez, P. A., Ruvalcaba-Limon, E., Lazcano-Ramírez, F. M., Hernández-Santiago, A., Juárez-Aburto, J. A., Larios-Cruz, K. Y., Hernández-Gómez, L. E., Merino-González, J. A., & González-Mejía, Y. (2023). Development and validation of an infrared-artificial intelligence software for breast cancer detection. Exploration of Targeted Anti-Tumor Therapy, 4(2), 294–306. https://doi.org/10.37349/etat.2023.00135

Mital, S., & Nguyen, H. V. (2022). Cost-effectiveness of using artificial intelligence versus polygenic risk score to guide breast cancer screening. BMC Cancer, 22(1), 501. https://doi.org/10.1186/s12885-022-09613-1

Oberije, C. J. G., Sharma, N., James, J. J., Ng, A. Y., Nash, J., & Kecskemethy, P. D. (2023). Comparing Prognostic Factors of Cancers Identified by Artificial Intelligence (AI) and Human Readers in Breast Cancer Screening. Cancers, 15(12), Article 12. https://doi.org/10.3390/cancers15123069

Ongena, Y. P., Yakar, D., Haan, M., & Kwee, T. C. (2021). Artificial Intelligence in Screening Mammography: A Population Survey of Women’s Preferences. Journal of the American College of Radiology, 18(1, Part A), 79–86. https://doi.org/10.1016/j.jacr.2020.09.042

Ren, W., Chen, M., Qiao, Y., & Zhao, F. (2022). Global guidelines for breast cancer screening: A systematic review. The Breast, 64, 85–99. https://doi.org/10.1016/j.breast.2022.04.003

Rodriguez-Ruiz, A., Lång, K., Gubern-Merida, A., Broeders, M., Gennaro, G., Clauser, P., Helbich, T. H., Chevalier, M., Tan, T., Mertelmeier, T., Wallis, M. G., Andersson, I., Zackrisson, S., Mann, R. M., & Sechopoulos, I. (2019). Stand-Alone Artificial Intelligence for Breast Cancer Detection in Mammography: Comparison With 101 Radiologists | JNCI: Journal of the National Cancer Institute | Oxford Academic. https://academic.oup.com/jnci/article/111/9/916/5307077?login=false

Rodriguez-Ruiz, A., Lång, K., Gubern-Merida, A., Teuwen, J., Broeders, M., Gennaro, G., Clauser, P., Helbich, T. H., Chevalier, M., Mertelmeier, T., Wallis, M. G., Andersson, I., Zackrisson, S., Sechopoulos, I., & Mann, R. M. (2019). Can we reduce the workload of mammographic screening by automatic identification of normal exams with artificial intelligence? A feasibility study. European Radiology, 29(9), 4825–4832. https://doi.org/10.1007/s00330-019-06186-9

Salim, M., Wåhlin, E., Dembrower, K., Azavedo, E., Foukakis, T., Liu, Y., Smith, K., Eklund, M., & Strand, F. (2020). External Evaluation of 3 Commercial Artificial Intelligence Algorithms for Independent Assessment of Screening Mammograms. JAMA Oncology, 6(10), 1581–1588. https://doi.org/10.1001/jamaoncol.2020.3321

Salod, Z., & Singh, Y. (2019). Comparison of the Performance of Machine Learning Algorithms in Breast Cancer Screening and Detection: A Protocol—Zakia Salod, Yashik Singh, 2019. https://journals.sagepub.com/doi/10.4081/jphr.2019.1677

Sato, A., Haneda, E., Suganuma, N., & Narimatsu, H. (2021). Preliminary Screening for Hereditary Breast and Ovarian Cancer Using a Chatbot Augmented Intelligence Genetic Counselor: Development and Feasibility Study. JMIR Formative Research, 5(2), e25184. https://doi.org/10.2196/25184

SEER. (2023). Cancer of the Breast (Female)—Cancer Stat Facts. SEER. https://seer.cancer.gov/statfacts/html/breast.html

Sharma, N., Ng, A. Y., James, J. J., Khara, G., Ambrózay, É., Austin, C. C., Forrai, G., Fox, G., Glocker, B., Heindl, A., Karpati, E., Rijken, T. M., Venkataraman, V., Yearsley, J. E., & Kecskemethy, P. D. (2023). Multi-vendor evaluation of artificial intelligence as an independent reader for double reading in breast cancer screening on 275,900 mammograms. BMC Cancer, 23(1), 460. https://doi.org/10.1186/s12885-023-10890-7

Siegel, R. L., Miller, K. D., Wagle, N. S., & Jemal, A. (2023). Cancer statistics, 2023. CA: A Cancer Journal for Clinicians, 73(1), 17–48. https://doi.org/10.3322/caac.21763

Suh, Y. J., Jung, J., & Cho. (2020). JPM | Free Full-Text | Automated Breast Cancer Detection in Digital Mammograms of Various Densities via Deep Learning. https://www.mdpi.com/2075-4426/10/4/211

Tan, T., Rodriguez-Ruiz, A., Zhang, T., Xu, L., Beets-Tan, R. G. H., Shen, Y., Karssemeijer, N., Xu, J., Mann, R. M., & Bao, L. (2023). Multi-modal artificial intelligence for the combination of automated 3D breast ultrasound and mammograms in a population of women with predominantly dense breasts. Insights into Imaging, 14(1), 10. https://doi.org/10.1186/s13244-022-01352-y

Tari, D. U., Santonastaso, R., De Lucia, D. R., Santarsiere, M., & Pinto, F. (2023). JPM | Free Full-Text | Breast Density Evaluation According to BI-RADS 5th Edition on Digital Breast Tomosynthesis: AI Automated Assessment Versus Human Visual Assessment. https://www.mdpi.com/2075-4426/13/4/609

Tzortzis, I. N., Davradou, A., Rallis, I., Kaselimi, M., Makantasis, K., Doulamis, A., & Doulamis, N. (2022). Diagnostics | Free Full-Text | Tensor-Based Learning for Detecting Abnormalities on Digital Mammograms. https://www.mdpi.com/2075-4418/12/10/2389

Uematsu, T., Nakashima, K., Harada, T. L., Nasu, H., & Igarashi, T. (2023). Comparisons between artificial intelligence computer-aided detection synthesized mammograms and digital mammograms when used alone and in combination with tomosynthesis images in a virtual screening setting. Japanese Journal of Radiology, 41(1), 63–70. https://doi.org/10.1007/s11604-022-01327-5

van Winkel, S. L., Rodríguez-Ruiz, A., Appelman, L., Gubern-Mérida, A., Karssemeijer, N., Teuwen, J., Wanders, A. J. T., Sechopoulos, I., & Mann, R. M. (2021). Impact of artificial intelligence support on accuracy and reading time in breast tomosynthesis image interpretation: A multi-reader multi-case study. European Radiology, 31(11), 8682–8691. https://doi.org/10.1007/s00330-021-07992-w

Van Zelst, J. C., Tan, T., Mann, R. M., & Karssemeijer, N. (2019). Validation of radiologists’ findings by computer-aided detection (CAD) software in breast cancer detection with automated 3D breast ultrasound: A concept study in implementation of artificial intelligence software—Jan CM van Zelst, Tao Tan, Ritse M Mann, Nico Karssemeijer, 2020. https://journals.sagepub.com/doi/10.1177/0284185119858051

Wang, W., & Wang, Y. (2023). Diagnostics | Free Full-Text | Deep Learning-Based Modified YOLACT Algorithm on Magnetic Resonance Imaging Images for Screening Common and Difficult Samples of Breast Cancer. https://www.mdpi.com/2075-4418/13/9/1582

Watanabe, A. T., Lim, V., Vu, H. X., Chim, R., Weise, E., Liu, J., Bradley, W. G., & Comstock, C. E. (2019). Improved Cancer Detection Using Artificial Intelligence: A Retrospective Evaluation of Missed Cancers on Mammography. Journal of Digital Imaging, 32(4), 625–637. https://doi.org/10.1007/s10278-019-00192-5

Yala, A., Mikhael, P. G., Strand, F., Lin, G., Satuluru, S., Kim, T., Banerjee, I., Gichoya, J., Trivedi, H., Lehman, C. D., Hughes, K., Sheedy, D. J., Matthis, L. M., Karunakaran, B., Hegarty, K. E., Sabino, S., Silva, T. B., Evangelista, M. C., Caron, R. F., … Barzilay, R. (2022). Multi-Institutional Validation of a Mammography-Based Breast Cancer Risk Model | Journal of Clinical Oncology. https://ascopubs.org/doi/full/10.1200/JCO.21.01337

Zhang, S., Liao, M., Wang, J., Zhu, Y., Zhang, Y., Zhang, J., Zheng, R., Zhu, L. L. D., Chen, H., & Wang, W. (2022). Fully automatic tumor segmentation of breast ultrasound images with deep learning—Zhang—2023—Journal of Applied Clinical Medical Physics—Wiley Online Library. https://aapm.onlinelibrary.wiley.com/doi/full/10.1002/acm2.13863

Published

05-31-2024

How to Cite

Jin, A., & Tosato, D. (2024). The Implementation of Artificial Intelligence in Breast Cancer Screening. Journal of Student Research, 13(2). https://doi.org/10.47611/jsrhs.v13i2.6530

Issue

Section

HS Review Articles