Genetic Mechanism of Food Allergies

Authors

  • Simran Goel Hinsdale South High School
  • Dr. Rajagopal Appavu, Ph.D.
  • Jothsna Kethar

DOI:

https://doi.org/10.47611/jsrhs.v13i2.6505

Keywords:

Food Allergies, Genetics, Allergic Diseases

Abstract

Food allergy (FA) is the culmination of different genetic and environmental factors. It is an increasingly concerning health problem affecting millions of people around the globe. Currently, there is research being done on the impact that genetics have on a person’s likelihood of having a food allergy, as well as how genetics research can further help the prevention and treatment of food allergies. This paper aims to review current genetic studies, such as familial aggregation studies and candidate gene association studies, both of which provide evidence that certain genes make it more likely for people to have FA. Some genes including the HLA gene family linked to peanut and apple allergies, the CD14 gene linked to multiple FA studies, and SPINK5, a protease inhibitor protein, all make a person with any of these genes more likely to have FA. This paper also focuses on examining future treatments, specifically immunotherapy treatments like the OIT, and future diagnostic tests for FA, such as the BAT and CRD, all of which are now being tested in labs. The field of FA genetics is a new and promising area of study and has the potential to impact many lives in the future.

Downloads

Download data is not yet available.

References or Bibliography

Allen, K. J., Koplin, J. J., Ponsonby, A.-L., Gurrin, L. C., Wake, M., Vuillermin, P., Martin, P., Matheson, M., Lowe,

A., Robinson, M., Tey, D., Osborne, N. J., Dang, T., Tina Tan, H.-T., Thiele, L., Anderson, D., Czech, H., Sanjeevan, J., Zurzolo, G., & Dwyer, T. (2013). Vitamin D insufficiency is associated with challenge-proven food allergy in infants. Journal of Allergy and Clinical Immunology, 131(4), 1109-1116.e6. https://doi.org/10.1016/j.jaci.2013.01.017

Allergy skin tests - Mayo Clinic. (2022, January 6). https://www.mayoclinic.org/tests-procedures/allergy-tests/about/pac-20392895

Ashley, S., Tan, H. T., Peters, R. L., Allen, K. J., Vuillermin, P., Dharmage, S. C., Tang, M. L., Lowe, A. J., Ponsonby, A., Molloy, J., Matheson, M. C., Saffery, R., Ellis, J. A., & Martino, D. (2017). Genetic variation at the Th2 immune gene IL 13 is associated with IgE‐mediated pediatric food allergy. Wiley Online Library, 47(8), 1032–1037. https://doi.org/10.1111/cea.12942

Bunyavanich, S., & Berin, M. C. (2019). Food allergy and the microbiome: Current understandings and future directions. The Journal of Allergy and Clinical Immunology, 144(6), 1468–1477. https://doi.org/10.1016/j.jaci.2019.10.019

Campos, E., Shimojo, N., Inoue, Y., Arima, T., Suzuki, S., Tomiita, M., Matsuura, T., Hata, A., Suzuki, Y., Aoyagi, M., & Kohno, Y. (2007). No association of polymorphisms in the 5’ region of the CD14 gene and food allergy in a Japanese population. Allergology International, 56(1), 23–27. https://doi.org/10.2332/allergolint.o-06-432

Facts and Statistics. (n.d.). FoodAllergy.org. https://www.foodallergy.org/resources/facts-and-statistics

Food Allergies | Causes, symptoms & treatment | ACAAI Public website. (2022, November 7). ACAAI Public Website. https://acaai.org/allergies/allergic-conditions/food/

Gupta, R. S., Walkner, M., Greenhawt, M., Lau, C. H., Caruso, D., Wang, X., Pongracic, J. A., & Smith, B. (2016). Food allergy sensitization and presentation in siblings of food allergic children. The Journal of Allergy and Clinical Immunology: In Practice, 4(5), 956–962. https://doi.org/10.1016/j.jaip.2016.04.009

Hong, X., Tsai, H. J., & Wang, X. (2009). Genetics of food allergy. Current Opinion in Pediatrics, 21(6), 770–776. https://doi.org/10.1097/mop.0b013e32833252dc

Jacob, C. M. A., Pastorino, A. C., Okay, T. S., Castro, A. P. B. M., Gushken, A., Watanabe, L., Frucchi, V. C. Z., & De Oliveira, L. C. (2013). Interleukin 10 (IL10) and transforming growth factor β1 (TGFβ1) gene polymorphisms in persistent IgE-mediated cow’s milk allergy. Clinics, 68(7), 1004–1009. https://doi.org/10.6061/clinics/2013(07)19

Johansson, E., & Mersha, T. B. (2021). Genetics of food allergy. Immunology and Allergy Clinics of North America, 41(2), 301–319. https://doi.org/10.1016/j.iac.2021.01.010

Kanchan, K., Clay, S. M., Irizar, H., Bunyavanich, S., & Mathias, R. A. (2021). Current insights into the genetics of food allergy. The Journal of Allergy and Clinical Immunology, 147(1), 15–28. https://doi.org/10.1016/j.jaci.2020.10.039

Liem, J., Huq, S., Kozyrskyj, A. L., & Becker, A. B. (2008). Should Younger Siblings of Peanut-Allergic Children Be Assessed by an Allergist before Being Fed Peanut? Allergy, Asthma & Clinical Immunology, 4(4). https://doi.org/10.1186/1710-1492-4-4-144

Liu, X., Zhang, S., Tsai, H. J., Hong, X., Wang, B., Fang, Y., Pongracic, J. A., & Wang, X. (2009). Genetic and environmental contributions to allergen sensitization in a Chinese twin study. Clinical & Experimental Allergy, 39(7), 991–998. https://doi.org/10.1111/j.1365-2222.2009.03228.x

Melén, E., Nyberg, F., Lindgren, C. M., Berglind, N., Zucchelli, M., Nordling, E., Hallberg, J., Svartengren, M., Morgenstern, R., Kere, J., Bellander, T., Wickman, M., & Pershagen, G. (2008). Interactions between Glutathione S- Transferase P1, Tumor Necrosis Factor, and Traffic-Related Air Pollution for Development of Childhood Allergic Disease. Environmental Health Perspectives, 116(8), 1077–1084. https://doi.org/10.1289/ehp.11117

Santos, A., Douiri, A., Becares, N., Wu, S., Stephens, A., Radulovic, S., Chan, S., A, F., Du Toit, G., Turcanu, V., & Lack, G. (2014). Basophil activation test discriminates between allergy and tolerance in peanut-sensitized children. The Journal of Allergy and Clinical Immunology, 134(3), 645–652. https://doi.org/10.1016/j.jaci.2014.04.039

Sicherer, S. H., Furlong, T. J., Maes, H. H., Desnick, R. J., Sampson, H. A., & Gelb, B. D. (2000).

Genetics of peanut allergy: a twin study. The Journal of Allergy and Clinical Immunology, 106(1 Pt 1), 53–56. https://doi.org/10.1067/mai.2000.108105

Tan, H.-T. T., Ellis, J. A., Koplin, J. J., Matheson, M. C., Gurrin, L. C., Lowe, A. J., Martin, P. E., Dang, T. D.,

Wake, M., Tang, M. L. K., Ponsonby, A.-L., Dharmage, S. C., & Allen, K. J. (2012). Filaggrin loss-of-function mutations do not predict food allergy over and above the risk of food sensitization among infants. Journal of Allergy and Clinical Immunology, 130(5), 1211-1213.e3. https://doi.org/10.1016/j.jaci.2012.07.022

Tham, E. H., & Leung, D. Y. (2018). How different parts of the world provide new insights into food allergy. Allergy, Asthma, and Immunology Research, 10(4), 290. https://doi.org/10.4168/aair.2018.10.4.290

Woo, J. G., Assa’ad, A., Heizer, A. B., Bernstein, J. A., & Khurana, K. (2003). The −159 C→T polymorphism of

CD14 is associated with nonatopic asthma and food allergy. 112(2), 438–444. https://doi.org/10.1067/mai.2003.1634

Yu, W., Freeland, D. M. H., & Nadeau, K. (2016). Food allergy: immune mechanisms, diagnosis and immunotherapy. Nature Reviews Immunology, 16(12), 751–765. https://doi.org/10.1038/nri.2016.111

Published

05-31-2024

How to Cite

Goel, S., Appavu, Ph.D., D. R. ., & Kethar, J. . (2024). Genetic Mechanism of Food Allergies. Journal of Student Research, 13(2). https://doi.org/10.47611/jsrhs.v13i2.6505

Issue

Section

HS Review Articles