Applications and Advancements in Stem Cells for Cardiac Tissue Engineering
DOI:
https://doi.org/10.47611/jsrhs.v13i1.6495Keywords:
stem cells, tissue regeneration, bioengineering, cardiomyocytes, myocardial infarction, bioprinting, bioengineered methodsAbstract
Heart disease has continued to be the leading cause of death in the world (Mc Namara et al., 2019). Despite the growing need for a therapeutic, regenerative medicine approach, there has been a lack of advancements resulting in possible treatment options for these patients. Researchers have developed various approaches to combat the adversities of heart disease, ranging from small-scale cardiac patches to large-scale whole organ regeneration approaches. Although these findings are still preliminary, they provide potential therapeutic approaches. The main ingredient towards this promising direction are stem cell-derived cardiomyocytes, in which induced pluripotent stem cells are reprogrammed through signaling pathways to mimic characteristics of mature cardiac cells. With these self-renewing cardiac cells, researchers have been able to formulate hydrogel patches that mimic the environment of the cardiac tissue to eventually mend the injury and pump synchronously. For deeper penetration and favored nutrient flow, a process known as FRESH 2.0 has created a ventricular scaffold printing method that aids in the oxygen, nutrients, and signaling flow for bioprinted organ parts (Lee et al., 2019). In developing these tissues, SWIFT has progressed the needed cellular density to produce a cardiomyocyte rich artificial organ (Skylar-Scott et al., 2019). These successes still face drawbacks with perfusable vascularization, cell density on a whole organ scale, consistent maturation of cardiomyocytes, and clinical applications. Nonetheless, researchers have made significant advancements for regenerative medicine regarding the cardiac tissue, and will continue to expand their look towards a successful replication of the whole organ.
Downloads
References or Bibliography
Brovold, M., Almeida, J. I., Pla-Palacín, I., Sainz-Arnal, P., Sánchez-Romero, N., Rivas, J. J., Almeida, H., Dachary, P. R., Serrano-Aulló, T., Soker, S., & Baptista, P. M. (2018). Naturally-Derived Biomaterials for Tissue Engineering Applications. Advances in Experimental Medicine and Biology, 1077, 421–449. https://doi.org/10.1007/978-981-13-0947-2_23
Cameli, M., Pastore, M. C., Campora, A., Lisi, M., & Mandoli, G. E. (2022). Donor shortage in heart transplantation: How can we overcome this challenge? Frontiers in Cardiovascular Medicine, 9, 1001002. https://doi.org/10.3389/fcvm.2022.1001002
Gilboa, S. M., Devine, O. J., Kucik, J. E., Oster, M. E., Riehle-Colarusso, T., Nembhard, W. N., Xu, P., Correa, A., Jenkins, K., & Marelli, A. J. (2016). Congenital Heart Defects in the United States: Estimating the Magnitude of the Affected Population in 2010. Circulation, 134(2), 101–109. https://doi.org/10.1161/CIRCULATIONAHA.115.019307
Harjola, V.-P., Mullens, W., Banaszewski, M., Bauersachs, J., Brunner-La Rocca, H.-P., Chioncel, O., Collins, S. P., Doehner, W., Filippatos, G. S., Flammer, A. J., Fuhrmann, V., Lainscak, M., Lassus, J., Legrand, M., Masip, J., Mueller, C., Papp, Z., Parissis, J., Platz, E., … Mebazaa, A. (2017). Organ dysfunction, injury and failure in acute heart failure: From pathophysiology to diagnosis and management. A review on behalf of the Acute Heart Failure Committee of the Heart Failure Association (HFA) of the European Society of Cardiology (ESC). European Journal of Heart Failure, 19(7), 821–836. https://doi.org/10.1002/ejhf.872
Kwon, S. G., Kwon, Y. W., Lee, T. W., Park, G. T., & Kim, J. H. (2018). Recent advances in stem cell therapeutics and tissue engineering strategies. Biomaterials Research, 22(1), 36. https://doi.org/10.1186/s40824-018-0148-4
Lee, A., Hudson, A. R., Shiwarski, D. J., Tashman, J. W., Hinton, T. J., Yerneni, S., Bliley, J. M., Campbell, P. G., & Feinberg, A. W. (2019). 3D bioprinting of collagen to rebuild components of the human heart. Science, 365(6452), 482–487. https://doi.org/10.1126/science.aav9051
Lian, X., Hsiao, C., Wilson, G., Zhu, K., Hazeltine, L. B., Azarin, S. M., Raval, K. K., Zhang, J., Kamp, T. J., & Palecek, S. P. (2012). Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. Proceedings of the National Academy of Sciences, 109(27). https://doi.org/10.1073/pnas.1200250109
Liu, X., Huang, J., Chen, T., Wang, Y., Xin, S., Li, J., Pei, G., & Kang, J. (2008). Yamanaka factors critically regulate the developmental signaling network in mouse embryonic stem cells. Cell Research, 18(12), 1177–1189. https://doi.org/10.1038/cr.2008.309
Mc Namara, K., Alzubaidi, H., & Jackson, J. K. (2019). Cardiovascular disease as a leading cause of death: How are pharmacists getting involved? Integrated Pharmacy Research & Practice, 8, 1–11. https://doi.org/10.2147/IPRP.S133088
Mechanic, O. J., Gavin, M., & Grossman, S. A. (2023). Acute Myocardial Infarction. In StatPearls. StatPearls Publishing. http://www.ncbi.nlm.nih.gov/books/NBK459269/
Mei, X., & Cheng, K. (2020). Recent Development in Therapeutic Cardiac Patches. Frontiers in Cardiovascular Medicine, 7, 610364. https://doi.org/10.3389/fcvm.2020.610364
Nikolova, M. P., & Chavali, M. S. (2019). Recent advances in biomaterials for 3D scaffolds: A review. Bioactive Materials, 4, 271–292. https://doi.org/10.1016/j.bioactmat.2019.10.005
Poliwoda, S., Noor, N., Downs, E., Schaaf, A., Cantwell, A., Ganti, L., Kaye, A. D., Mosel, L. I., Carroll, C. B., Viswanath, O., & Urits, I. (2022). Stem cells: A comprehensive review of origins and emerging clinical roles in medical practice. Orthopedic Reviews, 14(3). https://doi.org/10.52965/001c.37498
Rehman, I., & Rehman, A. (2023). Anatomy, Thorax, Heart. In StatPearls. StatPearls Publishing. http://www.ncbi.nlm.nih.gov/books/NBK470256/
Skylar-Scott, M. A., Uzel, S. G. M., Nam, L. L., Ahrens, J. H., Truby, R. L., Damaraju, S., & Lewis, J. A. (2019). Biomanufacturing of organ-specific tissues with high cellular density and embedded vascular channels. Science Advances, 5(9), eaaw2459. https://doi.org/10.1126/sciadv.aaw2459
Tsao, C. W., Aday, A. W., Almarzooq, Z. I., Anderson, C. A. M., Arora, P., Avery, C. L., Baker-Smith, C. M., Beaton, A. Z., Boehme, A. K., Buxton, A. E., Commodore-Mensah, Y., Elkind, M. S. V., Evenson, K. R., Eze-Nliam, C., Fugar, S., Generoso, G., Heard, D. G., Hiremath, S., Ho, J. E., … on behalf of the American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. (2023). Heart Disease and Stroke Statistics—2023 Update: A Report From the American Heart Association. Circulation, 147(8). https://doi.org/10.1161/CIR.0000000000001123
Published
How to Cite
Issue
Section
Copyright (c) 2024 Bora Jin
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.