Targeted Protein Degradation Technology: A Novel Strategy for Cancer Therapy
DOI:
https://doi.org/10.47611/jsrhs.v13i1.6455Keywords:
PROteolysis TArgeting Chimera (PROTAC), Targeted Protein Degradation, Novel Cancer Therapy, Ubiquitin Protease System, “Undruggable” ProteinsAbstract
PROteolysis TArgeting Chimera (PROTAC) technology is an effective tool to induce targeted degradation of pathogenic protein and is a novel cancer therapy. It uses the endogenous ubiquitin‐protease system (UPS), attracting ubiquitin and covering the target protein in it, thus resulting in its complete degradation of the protein interest (POI). The potential advantages of PROTAC technology compensate for the shortcomings of traditional cancer therapy and allow them to target “undruggable” proteins, which promote its rapid development in recent years. The review focuses on the mechanisms of PROTACs, discusses application of PROTACs targeting different oncogenic proteins and analyzes the strategies for designing efficient PROTACs. Collectively, the review provides references for future application of PROTACs in cancer treatment.
Downloads
References or Bibliography
Bekes, M., Langley, D., & Crews, C. (2021) PROTAC targeted protein degraders: the past is prologue. Nature Reviews Drug Discovery, 21: pp181-200 DOI: 10.1038/s41573-021-00371-6
Bemis, T.A., La Clair, J.J., & Burkart, M.D. (2021) Unraveling the role of linker design in proteolysis targeting chimeras. J Med Chem. 64(12): pp8042–8052 DOI: 10.1021/acs.jmedchem.1c00482
Bondeson, D.P., Smith, B.E., Burslem, G.M., Buhimschi, A.D., Hine, J., Jaime-Figueroa, S., et al. (2018) Lessons in PROTAC Design from Selective Degradation with a Promiscuous Warhead. Cell Chem Biol. 25: pp78-87 DOI: 10.1016/j.chembiol.2017.09.010
Bray, P.F., McKenzie, S.E., Edelstein, L.C., Nagalla, S., Delgrosso, K., Ertel, A., Kupper, J., Jing, Y., Londin, E., Loher, P., Chen, H.W., Fortina, P., & Rigoutsos I. (2013) The complex transcriptional landscape of the anucleate human platelet, BMC Genom. 14: article 1 DOI: 10.1186/1471-2164-14-1
Buhimschi, A.D., Armstrong, H.A., Toure, M., Jaime-Figueroa, S., Chen, T.L., Lehman, A.M., Woyach, J.A., Johnson, A.J., Byrd, J.C., & Crews, C.M. (2018) Targeting the C481s Ibrutinib-Resistance Mutation in Bruton's Tyrosine Kinase Using Protac-Mediated Degradation. Biochemistry 57: pp3564–3575 DOI:10.1021/acs.biochem.8b00391
Coffey, R.T., Shi, Y., Long, M.J., Marr, M.T., & Hedstrom, L (2016) Ubiquilin-mediated small molecule inhibition of mammalian target of rapamycin complex 1 (mTORC1) signaling. J Biol Chem. 291(10): pp5221–5233 DOI: 10.1074/jbc.M115.691584
Flanagan, J.J.,& Neklesa, T.K. (2019) Targeting nuclear receptors with PROTAC degraders. Mol Cell Endocrinol. 493: pp110452 DOI: 10.1016/j.mce.2019.110452
Gao, N., Chu, T-T., Li, Q-Q., Lim, Y-J., Qiu, T,, Ma, M-R., et al. (2017) Hydrophobic tagging mediated degradation of Alzheimer's disease related tau. RSC Adv. 7(64): pp40362–40366 DOI: 10.1039/c7ra05347a
Hines, J., Lartigue, S., Dong, H., Qian, Y., & Crews, C.M. (2019) MDM2-recruiting PROTAC offers superior, synergistic antiproliferative activity via simultaneous degradation of BRD4 and stabilization of p53. Cancer Res. 79(1): pp251–262 DOI: 10.1158/0008-5472.CAN-18-2918
Hu, K., Yin, F., Yu, M., Sun, C., Li, J., Liang, Y., et al. (2017) In-Tether Chiral Center Induced Helical Peptide Modulators Target p53-MDM2/MDMX and Inhibit Tumor Growth in Stem-Like Cancer Cell. Theranostics 7: pp4566-4576 DOI: 10.7150/thno.19840
Jia, M., Dahlman-Wright, K., & Gustafsson, J-A (2015) Estrogen receptor alpha and beta in health and disease. Best Pract Res Clin Endocrinol Metab. 29 (4): pp557–568 DOI: 10.1016/j.beem.2015.04.008
Jin, J., Wu, Y., Chen, J., Shen, Y., Zhang, L., Zhang, H., Chen, L., Yuan, H., Chen, H., Zhang, W., & Luan, X. (2020) The peptide PROTAC modality: a novel strategy for targeted protein ubiquitination. Theranostics, 10(22): pp10141-10153 DOI: 10.7150/thno.46985
Khan, S., He, Y., Zhang, X., Yuan, Y., Pu, S., Kong, Q., Zheng, G., & Zhou, D. (2020) PROteolysis TArgeting Chimeras (PROTACs) as emerging anticancer therapeutics. Oncogene, 39(26): pp4909-4924 DOI: 10.1038/s41388-020-1336-y
Kissopoulou, A., Jonasson, J., Lindahl, T.L. & Osman, A. (2013) Next generation sequencing analysis of human platelet PolyAþ mRNAs and rRNA-depleted total RNA, PloS One 8: pp e81809 DOI: 10.1371/journal.pone.0081809
Kubota, H. (2009) Quality control against misfolded proteins in the cytosol: a network for cell survival. J Biochem. 146(5): pp609–616 DOI: 10.1093/jb/mvp139
Lai, A.C. & Crews, C.M. (2017) Induced protein degradation: an emerging drug discovery paradigm. Nat Rev Drug Discov. 16: pp101-114 DOI: 10.1038/nrd.2016.211
Li, H., Dong, J., Cai, M., Xu, Z., Cheng, X.D., & Qin, J.J. (2021) Protein degradation technology: a strategic paradigm shift in drug discovery. Journal of Hematology & Oncology, 14: pp138 DOI: 10.1186/s13045-021-01146-7
Li, X. & Song, Y. (2020) Proteolysis-targeting chimera (PROTAC) for targeted protein degradation and cancer therapy. Journal of Hematology & Oncology, 13: pp50 DOI: 10.1186/s13045-020-00885-3
Liu, Z., Hu, M., Yang, Y., Du, C., Zhou, H., Liu, C., Chen, Y., Fan, L., Ma, H., Gong, Y., & Xie, Y. (2022) An overview of PROTACs: a promising drug discovery paradigm. Mol Biomed. 3(1): pp46-73 DOI: 10.1186/s43556-022-00112-0
Long, M.J., Gollapalli, D.R., & Hedstrom, L. (2012) Inhibitor mediated protein degradation. Chem Biol. 19(5): pp629–637 DOI: 10.1016/j.chembiol.2012.04.008
Lu, J., Qian, Y., Altieri, M., et al. (2015) Hijacking the E3 ubiquitin ligase cereblon to efficiently target BRD4. Chem Biol. 22(6): pp755‐763 DOI: 10.1016/j.chembiol.2015.05.009
Mansour, M.A. (2018) Ubiquitination: friend and foe in cancer. Int J Biochem Cell Biol. 101: pp80‐93 DOI: 10.1016/j.biocel.2018.06.001
Maneiro, M., De Vita, E., Conole, D., Kounde, C.S., Zhang, Q., & Tate, E.W. (2021) PROTACs, molecular glues and bifunctionals from bench to bedside: Unlocking the clinical potential of catalytic drugs Prog Med Chem. 60: pp67-190 DOI: 10.1016/bs.pmch.2021.01.002
Martin-Acosta, P., & Xiao, X. (2021) PROTACs to address the challenges facing small molecule inhibitors. European Journal of Medicinal Chemistry, 210: pp112993 DOI: 10.1016/j.ejmech.2020.112993
Mohamed, A.J., Yu, L., Bäckesjö, C.M., Vargas, L., Faryal, R., Aints, A., et al. (2009) Bruton’s tyrosine kinase (Btk): function, regulation, and transformation with special emphasis on the PH domain. Immunol Rev. 228(1): pp58–73 DOI: 10.1111/j.1600-065X.2008.00741.x
Neklesa, T.K., Winkler, J.D., & Crews, C.M. (2017) Targeted protein degradation by PROTACs. Pharmacol Ther. 174: pp138‐144 DOI: 10.1016/j.pharmthera.2017.02.027
Neklesa, T.K., Tae, H.S., Schneekloth, A.R., Stulberg, M.J., Corson, T.W., Sundberg, T.B., et al. (2011) Small-molecule hydrophobic tagging induced degradation of HaloTag fusion proteins. Nat Chem Biol. 7(8): pp538 DOI: 10.1038/nchembio.597
Nilsson, S., Koehler, K.F, & Gustafsson, J-A (2011) Development of subtypeselective oestrogen receptor-based therapeutics. Nat Rev Drug Discov. 10 (10): pp778–792 DOI: 10.1038/nrd3551
Paiva, S.L., & Crews, C.M. (2019) Targeted protein degradation: elements of PROTAC design. Curr Opin Chem Biol. 50: pp111-119 DOI: 10.1016/j.cbpa.2019.02.022
Pfaff, P., Samarasinghe, K.T., Crews, C.M., & Carreira, E.M. (2019) Reversible spatiotemporal control of induced protein degradation by bistable photoPROTACs. ACS Cent Sci. 5(10):pp1682–1690 DOI: 10.1021/acscentsci.9b00713
Qi, S.M., Dong, J., Xu, Z.Y., Cheng, X.D., Zhang, W.D., & Qin, J.J. (2021) PROTAC: An Effective Targeted Protein Degradation Strategy for Cancer Therapy. Frontiers in Pharmacology, 12: pp692574 DOI: 10.3389/fphar.2021.692574
Qin, H., Zhang, Y., Lou, Y., Pan, Z., Song, F., Liu, Y., Xu, T., Zheng, X., Hu, X., & Huang, P. (2022) Overview of PROTACs targeting the estrogen receptor: achievements for biological and drug discovery. Curr Med Chem. 29 (22): pp3922-3944 DOI: 10.2174/0929867328666211110101018
Sakamoto, K.M., Kim, K.B., Kumagai, A., Mercurio, F., Crews, C.M., & Deshaies, R.J. (2001) Protacs: chimeric molecules that target proteins to the Skp1–Cullin–F box complex for ubiquitination and degradation. Proc Natl Acad Sci. 98(15): pp8554–8559 DOI: 10.1073/pnas.141230798
Saluja, V., Mishra, Y., Mishra. V, Giri, N. & Nay, P. (2021) Dendrimers based cancer nanotheranostics: An overview. International Journal of Pharmaceutics, 600(2021): pp120485. DOI: 10.1016/j.ijpharm.2021.120485
Silke, J., & Meier, P. (2013) Inhibitor of apoptosis (IAP) proteins–modulators of cell death and inflammation. Cold Spring Harb Perspect Biol. 5(2): ppa008730 DOI: 10.1101/cshperspect.a008730
Wang, Q., Pechersky, Y., Sagawa, S., Pan, A.C. & Shaw, D.E. (2019) Structural Mechanism for Bruton’s Tyrosine Kinase Activation at the Cell Membrane. Proc Natl Acad Sci. 116: 9390-9399 DOI: 10.1073/pnas.1819301116
Wu, Y-L., Yang, X., Ren, Z., McDonnell, D.P., Norris, J.D., Willson, T.M., et al. (2005) Structural basis for an unexpected mode of SERM-mediated ER antagonism. Mol Cell. 18(4): pp413–424 DOI: 10.1016/j.molcel.2005.04.014
Zeng, S., Huang, W., Zheng, X., Cheng, L., Zhang, Z., Wang, J., & Shen, Z. (2021) Proteolysis targeting chimera (PROTAC) in drug discovery paradigm: Recent progress and future challenges. European Journal of Medical Chemistry, 210: pp112981 DOI: 10.1016/j.ejmech.2020.112981
Zhao, Q., Ren, C., Liu, L., Chen, J., Shao, Y., Sun, N., et al. (2019). Discovery of SIAIS178 as an Effective BCR-ABL Degrader by Recruiting Von Hippel-Lindau (VHL) E3 Ubiquitin Ligase. J. Med. Chem. 62, 9281–9298 DOI: 10.1021/acs.jmedchem.9b01264
Zheng, S., Tan, Y., Wang, Z., Li, C., Zhang, Z., Sang, X., Chen, H., & Yang Y. (2022) Accelerated rational PROTAC design via deep learning and molecular simulations. Nat Mach Intell. 4(9): pp739–748 DOI:10.1038/s42256-02200527-y
Zhou, P., Bogacki, R., McReynolds, L., & Howley, P.M. (2000) Harnessing the ubiquitination machinery to target the degradation of specific cellular proteins. Mol Cell. 6(3): pp751‐756 DOI: 10.1016/s1097-2765(00)00074-5
Zou, Y., Ma, D., & Wang, Y. (2019) The PROTAC technology in drug development. Cell Biochemistry & Function, 37(1): pp21-30. DOI: 10.1002/cbf.3369
Published
How to Cite
Issue
Section
Copyright (c) 2024 Alexander Xu; Emily Reynolds
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.