Targeted Protein Degradation Technology: A Novel Strategy for Cancer Therapy

Authors

  • Alexander Xu Mountain View High School
  • Emily Reynolds Apex Learning Virtual High School, Richardson, TX, USA

DOI:

https://doi.org/10.47611/jsrhs.v13i1.6455

Keywords:

PROteolysis TArgeting Chimera (PROTAC), Targeted Protein Degradation, Novel Cancer Therapy, Ubiquitin Protease System, “Undruggable” Proteins

Abstract

PROteolysis TArgeting Chimera (PROTAC) technology is an effective tool to induce targeted degradation of pathogenic protein and is a novel cancer therapy. It uses the endogenous ubiquitin‐protease system (UPS), attracting ubiquitin and covering the target protein in it, thus resulting in its complete degradation of the protein interest (POI). The potential advantages of PROTAC technology compensate for the shortcomings of traditional cancer therapy and allow them to target “undruggable” proteins, which promote its rapid development in recent years. The review focuses on the mechanisms of PROTACs, discusses application of PROTACs targeting different oncogenic proteins and analyzes the strategies for designing efficient PROTACs. Collectively, the review provides references for future application of PROTACs in cancer treatment.

Downloads

Download data is not yet available.

Author Biography

Alexander Xu, Mountain View High School

Alexander Xu is a junior at Mountain View High School (MVHS) with a profound passion for biology—a field that has not only sparked his curiosity but also given him unforgettable memories, such as watching a playful seagull engage with an otter. Alexander is currently immersed in independent research under the guidance of university faculty, and he stands out competitively in the Science Olympiad (SciOly) and USABO. With over 20 medals from regional to national levels in SciOly and semi-finalist status in USABO to his credit, Alexander's achievements speak for themselves. Beyond his scientific interest,  he expresses his perspective of nature through art and poetry, using vivid lines, colors, shades and emotive words, showcasing a side of his rich and diverse identity. Furthermore, Alexander leads as the President of the MVHS Ecology Club and is an esteemed member of Congresswoman Anna G Eshoo's Student Advisory Board.

References or Bibliography

Bekes, M., Langley, D., & Crews, C. (2021) PROTAC targeted protein degraders: the past is prologue. Nature Reviews Drug Discovery, 21: pp181-200 DOI: 10.1038/s41573-021-00371-6

Bemis, T.A., La Clair, J.J., & Burkart, M.D. (2021) Unraveling the role of linker design in proteolysis targeting chimeras. J Med Chem. 64(12): pp8042–8052 DOI: 10.1021/acs.jmedchem.1c00482

Bondeson, D.P., Smith, B.E., Burslem, G.M., Buhimschi, A.D., Hine, J., Jaime-Figueroa, S., et al. (2018) Lessons in PROTAC Design from Selective Degradation with a Promiscuous Warhead. Cell Chem Biol. 25: pp78-87 DOI: 10.1016/j.chembiol.2017.09.010

Bray, P.F., McKenzie, S.E., Edelstein, L.C., Nagalla, S., Delgrosso, K., Ertel, A., Kupper, J., Jing, Y., Londin, E., Loher, P., Chen, H.W., Fortina, P., & Rigoutsos I. (2013) The complex transcriptional landscape of the anucleate human platelet, BMC Genom. 14: article 1 DOI: 10.1186/1471-2164-14-1

Buhimschi, A.D., Armstrong, H.A., Toure, M., Jaime-Figueroa, S., Chen, T.L., Lehman, A.M., Woyach, J.A., Johnson, A.J., Byrd, J.C., & Crews, C.M. (2018) Targeting the C481s Ibrutinib-Resistance Mutation in Bruton's Tyrosine Kinase Using Protac-Mediated Degradation. Biochemistry 57: pp3564–3575 DOI:10.1021/acs.biochem.8b00391

Coffey, R.T., Shi, Y., Long, M.J., Marr, M.T., & Hedstrom, L (2016) Ubiquilin-mediated small molecule inhibition of mammalian target of rapamycin complex 1 (mTORC1) signaling. J Biol Chem. 291(10): pp5221–5233 DOI: 10.1074/jbc.M115.691584

Flanagan, J.J.,& Neklesa, T.K. (2019) Targeting nuclear receptors with PROTAC degraders. Mol Cell Endocrinol. 493: pp110452 DOI: 10.1016/j.mce.2019.110452

Gao, N., Chu, T-T., Li, Q-Q., Lim, Y-J., Qiu, T,, Ma, M-R., et al. (2017) Hydrophobic tagging mediated degradation of Alzheimer's disease related tau. RSC Adv. 7(64): pp40362–40366 DOI: 10.1039/c7ra05347a

Hines, J., Lartigue, S., Dong, H., Qian, Y., & Crews, C.M. (2019) MDM2-recruiting PROTAC offers superior, synergistic antiproliferative activity via simultaneous degradation of BRD4 and stabilization of p53. Cancer Res. 79(1): pp251–262 DOI: 10.1158/0008-5472.CAN-18-2918

Hu, K., Yin, F., Yu, M., Sun, C., Li, J., Liang, Y., et al. (2017) In-Tether Chiral Center Induced Helical Peptide Modulators Target p53-MDM2/MDMX and Inhibit Tumor Growth in Stem-Like Cancer Cell. Theranostics 7: pp4566-4576 DOI: 10.7150/thno.19840

Jia, M., Dahlman-Wright, K., & Gustafsson, J-A (2015) Estrogen receptor alpha and beta in health and disease. Best Pract Res Clin Endocrinol Metab. 29 (4): pp557–568 DOI: 10.1016/j.beem.2015.04.008

Jin, J., Wu, Y., Chen, J., Shen, Y., Zhang, L., Zhang, H., Chen, L., Yuan, H., Chen, H., Zhang, W., & Luan, X. (2020) The peptide PROTAC modality: a novel strategy for targeted protein ubiquitination. Theranostics, 10(22): pp10141-10153 DOI: 10.7150/thno.46985

Khan, S., He, Y., Zhang, X., Yuan, Y., Pu, S., Kong, Q., Zheng, G., & Zhou, D. (2020) PROteolysis TArgeting Chimeras (PROTACs) as emerging anticancer therapeutics. Oncogene, 39(26): pp4909-4924 DOI: 10.1038/s41388-020-1336-y

Kissopoulou, A., Jonasson, J., Lindahl, T.L. & Osman, A. (2013) Next generation sequencing analysis of human platelet PolyAþ mRNAs and rRNA-depleted total RNA, PloS One 8: pp e81809 DOI: 10.1371/journal.pone.0081809

Kubota, H. (2009) Quality control against misfolded proteins in the cytosol: a network for cell survival. J Biochem. 146(5): pp609–616 DOI: 10.1093/jb/mvp139

Lai, A.C. & Crews, C.M. (2017) Induced protein degradation: an emerging drug discovery paradigm. Nat Rev Drug Discov. 16: pp101-114 DOI: 10.1038/nrd.2016.211

Li, H., Dong, J., Cai, M., Xu, Z., Cheng, X.D., & Qin, J.J. (2021) Protein degradation technology: a strategic paradigm shift in drug discovery. Journal of Hematology & Oncology, 14: pp138 DOI: 10.1186/s13045-021-01146-7

Li, X. & Song, Y. (2020) Proteolysis-targeting chimera (PROTAC) for targeted protein degradation and cancer therapy. Journal of Hematology & Oncology, 13: pp50 DOI: 10.1186/s13045-020-00885-3

Liu, Z., Hu, M., Yang, Y., Du, C., Zhou, H., Liu, C., Chen, Y., Fan, L., Ma, H., Gong, Y., & Xie, Y. (2022) An overview of PROTACs: a promising drug discovery paradigm. Mol Biomed. 3(1): pp46-73 DOI: 10.1186/s43556-022-00112-0

Long, M.J., Gollapalli, D.R., & Hedstrom, L. (2012) Inhibitor mediated protein degradation. Chem Biol. 19(5): pp629–637 DOI: 10.1016/j.chembiol.2012.04.008

Lu, J., Qian, Y., Altieri, M., et al. (2015) Hijacking the E3 ubiquitin ligase cereblon to efficiently target BRD4. Chem Biol. 22(6): pp755‐763 DOI: 10.1016/j.chembiol.2015.05.009

Mansour, M.A. (2018) Ubiquitination: friend and foe in cancer. Int J Biochem Cell Biol. 101: pp80‐93 DOI: 10.1016/j.biocel.2018.06.001

Maneiro, M., De Vita, E., Conole, D., Kounde, C.S., Zhang, Q., & Tate, E.W. (2021) PROTACs, molecular glues and bifunctionals from bench to bedside: Unlocking the clinical potential of catalytic drugs Prog Med Chem. 60: pp67-190 DOI: 10.1016/bs.pmch.2021.01.002

Martin-Acosta, P., & Xiao, X. (2021) PROTACs to address the challenges facing small molecule inhibitors. European Journal of Medicinal Chemistry, 210: pp112993 DOI: 10.1016/j.ejmech.2020.112993

Mohamed, A.J., Yu, L., Bäckesjö, C.M., Vargas, L., Faryal, R., Aints, A., et al. (2009) Bruton’s tyrosine kinase (Btk): function, regulation, and transformation with special emphasis on the PH domain. Immunol Rev. 228(1): pp58–73 DOI: 10.1111/j.1600-065X.2008.00741.x

Neklesa, T.K., Winkler, J.D., & Crews, C.M. (2017) Targeted protein degradation by PROTACs. Pharmacol Ther. 174: pp138‐144 DOI: 10.1016/j.pharmthera.2017.02.027

Neklesa, T.K., Tae, H.S., Schneekloth, A.R., Stulberg, M.J., Corson, T.W., Sundberg, T.B., et al. (2011) Small-molecule hydrophobic tagging induced degradation of HaloTag fusion proteins. Nat Chem Biol. 7(8): pp538 DOI: 10.1038/nchembio.597

Nilsson, S., Koehler, K.F, & Gustafsson, J-A (2011) Development of subtypeselective oestrogen receptor-based therapeutics. Nat Rev Drug Discov. 10 (10): pp778–792 DOI: 10.1038/nrd3551

Paiva, S.L., & Crews, C.M. (2019) Targeted protein degradation: elements of PROTAC design. Curr Opin Chem Biol. 50: pp111-119 DOI: 10.1016/j.cbpa.2019.02.022

Pfaff, P., Samarasinghe, K.T., Crews, C.M., & Carreira, E.M. (2019) Reversible spatiotemporal control of induced protein degradation by bistable photoPROTACs. ACS Cent Sci. 5(10):pp1682–1690 DOI: 10.1021/acscentsci.9b00713

Qi, S.M., Dong, J., Xu, Z.Y., Cheng, X.D., Zhang, W.D., & Qin, J.J. (2021) PROTAC: An Effective Targeted Protein Degradation Strategy for Cancer Therapy. Frontiers in Pharmacology, 12: pp692574 DOI: 10.3389/fphar.2021.692574

Qin, H., Zhang, Y., Lou, Y., Pan, Z., Song, F., Liu, Y., Xu, T., Zheng, X., Hu, X., & Huang, P. (2022) Overview of PROTACs targeting the estrogen receptor: achievements for biological and drug discovery. Curr Med Chem. 29 (22): pp3922-3944 DOI: 10.2174/0929867328666211110101018

Sakamoto, K.M., Kim, K.B., Kumagai, A., Mercurio, F., Crews, C.M., & Deshaies, R.J. (2001) Protacs: chimeric molecules that target proteins to the Skp1–Cullin–F box complex for ubiquitination and degradation. Proc Natl Acad Sci. 98(15): pp8554–8559 DOI: 10.1073/pnas.141230798

Saluja, V., Mishra, Y., Mishra. V, Giri, N. & Nay, P. (2021) Dendrimers based cancer nanotheranostics: An overview. International Journal of Pharmaceutics, 600(2021): pp120485. DOI: 10.1016/j.ijpharm.2021.120485

Silke, J., & Meier, P. (2013) Inhibitor of apoptosis (IAP) proteins–modulators of cell death and inflammation. Cold Spring Harb Perspect Biol. 5(2): ppa008730 DOI: 10.1101/cshperspect.a008730

Wang, Q., Pechersky, Y., Sagawa, S., Pan, A.C. & Shaw, D.E. (2019) Structural Mechanism for Bruton’s Tyrosine Kinase Activation at the Cell Membrane. Proc Natl Acad Sci. 116: 9390-9399 DOI: 10.1073/pnas.1819301116

Wu, Y-L., Yang, X., Ren, Z., McDonnell, D.P., Norris, J.D., Willson, T.M., et al. (2005) Structural basis for an unexpected mode of SERM-mediated ER antagonism. Mol Cell. 18(4): pp413–424 DOI: 10.1016/j.molcel.2005.04.014

Zeng, S., Huang, W., Zheng, X., Cheng, L., Zhang, Z., Wang, J., & Shen, Z. (2021) Proteolysis targeting chimera (PROTAC) in drug discovery paradigm: Recent progress and future challenges. European Journal of Medical Chemistry, 210: pp112981 DOI: 10.1016/j.ejmech.2020.112981

Zhao, Q., Ren, C., Liu, L., Chen, J., Shao, Y., Sun, N., et al. (2019). Discovery of SIAIS178 as an Effective BCR-ABL Degrader by Recruiting Von Hippel-Lindau (VHL) E3 Ubiquitin Ligase. J. Med. Chem. 62, 9281–9298 DOI: 10.1021/acs.jmedchem.9b01264

Zheng, S., Tan, Y., Wang, Z., Li, C., Zhang, Z., Sang, X., Chen, H., & Yang Y. (2022) Accelerated rational PROTAC design via deep learning and molecular simulations. Nat Mach Intell. 4(9): pp739–748 DOI:10.1038/s42256-02200527-y

Zhou, P., Bogacki, R., McReynolds, L., & Howley, P.M. (2000) Harnessing the ubiquitination machinery to target the degradation of specific cellular proteins. Mol Cell. 6(3): pp751‐756 DOI: 10.1016/s1097-2765(00)00074-5

Zou, Y., Ma, D., & Wang, Y. (2019) The PROTAC technology in drug development. Cell Biochemistry & Function, 37(1): pp21-30. DOI: 10.1002/cbf.3369

Published

02-29-2024

How to Cite

Xu, A., & Reynolds, E. (2024). Targeted Protein Degradation Technology: A Novel Strategy for Cancer Therapy . Journal of Student Research, 13(1). https://doi.org/10.47611/jsrhs.v13i1.6455

Issue

Section

HS Review Articles