A review of the mechanics of dragline spider silk
DOI:
https://doi.org/10.47611/jsrhs.v13i1.6419Keywords:
Spider Silk, Mechanics, Strength, ElasticityAbstract
Spider silks demonstrate extraordinary mechanical performance. They rely on an intricate hierarchical structure that gives rise to unique properties. Of the many types of spider silks that are produced, dragline spider silk has attracted the most research attention due its extremely high strength. Since data on dragline spider silk is readily available, much can be understood about the nature of spider silk by analyzing the structure of dragline spider silk. Moreover, the study of spider silk can inspire the design of new materials. Here, we review the structure of dragline silk, present a particular material model to explain their behavior, and discuss the potential outlook in the area.
Downloads
References or Bibliography
Work, R. W. (1978). Mechanism for the deceleration and support of spiders on draglines. Transactions of the American Microscopical Society, 180-191.
Gosline, J. M., DeMont, M. E., & Denny, M. W. (1986). The structure and properties of spider silk. Endeavour, 10(1), 37-43.
Griffiths, J. R., & Salanitri, V. R. (1980). The strength of spider silk. Journal of Materials Science, 15, 491-496.
Work, R. W. (1976). The force-elongation behavior of web fibers and silks forcibly obtained from orb-web-spinning spiders. Textile Research Journal, 46(7), 485-492.
Meyers, M. A., McKittrick, J., & Chen, P. Y. (2013). Structural biological materials: critical mechanics-materials connections. science, 339(6121), 773-779.
Riekel, C., Craig, C. L., Burghammer, M., & Müller, M. (2001). Microstructural homogeneity of support silk spun by Eriophora fuliginea (CL Koch) determined by scanning X-ray microdiffraction. Naturwissenschaften, 88, 67-72.
Rousseau, M. E., Hernández Cruz, D., West, M. M., Hitchcock, A. P., & Pézolet, M. (2007). Nephila clavipes spider dragline silk microstructure studied by scanning transmission X-ray microscopy. Journal of the American Chemical Society, 129(13), 3897-3905.
Gould, S. A. C., Tran, K. T., Spagna, J. C., Moore, A. M. F., & Shulman, J. B. (1999). Short and long range order of the morphology of silk from Latrodectus hesperus (Black Widow) as characterized by atomic force microscopy. International journal of biological macromolecules, 24(2-3), 151-157.
Gosline, J. M., DeMont, M. E., & Denny, M. W. (1986). The structure and properties of spider silk. Endeavour, 10(1), 37-43.
Altman, G. H., Horan, R. L., Lu, H. H., Moreau, J., Martin, I., Richmond, J. C., & Kaplan, D. L. (2002). Silk matrix for tissue engineered anterior cruciate ligaments. Biomaterials, 23(20), 4131-4141.
Hümmerich, D., Slotta, U., & Scheibel, T. (2006). Processing and modification of films made from recombinant spider silk proteins. Applied Physics A, 82, 219-222.
Rammensee, S., Hümmerich, D., Hermanson, K. D., Scheibel, T., & Bausch, A. R. (2006). Rheological characterization of hydrogels formed by recombinantly produced spider silk. Applied Physics A, 82, 261-264.
Hassan, C. M., & Peppas, N. A. (2000). Structure and applications of poly (vinyl alcohol) hydrogels produced by conventional crosslinking or by freezing/thawing methods. Biopolymers· PVA hydrogels, anionic polymerisation nanocomposites, 37-65.
Langer, R. (1998). Drug delivery and targeting. Nature, 392(6679 Suppl), 5-10.
Calvert, P. (2009). Hydrogels for soft machines. Advanced materials, 21(7), 743-756.
Arcidiacono, S., Mello, C. M., Butler, M., Welsh, E., Soares, J. W., Allen, A., ... & Chase, S. (2002). Aqueous processing and fiber spinning of recombinant spider silks. Macromolecules, 35(4), 1262-1266.
Published
How to Cite
Issue
Section
Copyright (c) 2024 Leo Sandstrom
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.