The Role of Astrocytes in Promoting Glioblastoma Pathogenicity
DOI:
https://doi.org/10.47611/jsrhs.v13i1.6385Keywords:
astrocytes, glioblastoma, tunneling nanotubes, macrophages, tumor microenvironmentAbstract
For this review, we study the ways that astrocytes lead to increased glioblastoma (GBM) cancer cell survival by interacting with the tumor microenvironment (TME). GBM cells exploit and alter surrounding somatic cells, such as astrocytes, to fuel their growth and metastasis. Astrocytes are the most abundant cells in the central nervous system (CNS) and occupy important roles in maintaining the blood-brain barrier and stabilizing synapses. Tumor-associated astrocytes (TAAs) help tumor progression by interacting with players of the TME. In summary, astrocytes support GBM pathogenicity by transferring mitochondria and cholesterol and directly promoting immunosuppression through the modulation of tumor-associated macrophages (TAMs). Targeting non-GBM cells such as astrocytes, which directly promotes its development, could become a new option for treating the lethal GBM disease. A further understanding of the interaction involved in astrocyte-driven GBM pathogenicity could identify promising molecular targets and effective strategies against GBM.
Downloads
References or Bibliography
Anderson, N. M., & Simon, M. C. (2020). The tumor microenvironment. Current biology: CB, 30(16), R921–R925. https://doi.org/10.1016/j.cub.2020.06.081
Arifianto, M. R., Meizikri, R., Haq, I. B., Susilo, R. I., Wahyuhadi, J., Hermanto, Y., & Faried, A. (2023). Emerging hallmark of gliomas microenvironment in evading immunity: A basic concept. The Egyptian Journal of Neurology, Psychiatry and Neurosurgery, 59(1), 1-14. https://doi.org/10.1186/s41983-023-00635-5
Cornall, J. (2022, September). New study on astrocytes could lead to drug development for brain cancer. Labiotech.eu; Labiotech UG. https://www.labiotech.eu/trends-news/study-brain-cancer-astrocytes/
Nunno, V. D., Franceschi, E., Tosoni, A., Gatto, L., Bartolini, S., & Brandes, A. A. (2022). Glioblastoma Microenvironment: From an Inviolable Defense to a Therapeutic Chance. Frontiers in oncology, 12, 852950. https://doi.org/10.3389/fonc.2022.852950
Fairley, L. H., Grimm, A., & Eckert, A. (2022). Mitochondria Transfer in Brain Injury and Disease. Cells, 11(22), 3603–3603. https://doi.org/10.3390/cells11223603
Guo, X., Zhou, S., Yang, Z., Li, A., Hu, W., Dai, L., Liang, W., & Wang, X. (2021). Cholesterol metabolism and its implication in glioblastoma therapy. Journal of Cancer, 13(6), 1745-1757. https://doi.org/10.7150/jca.63609
Pantazopoulou, V., Jeannot, P., Rosberg, R., Berg, T. J., & Pietras, A. (2021). Hypoxia-Induced Reactivity of Tumor-Associated Astrocytes Affects Glioma Cell Properties. Cells, 10(3). https://doi.org/10.3390/cells10030613
Perelroizen, R., Philosof, B., Chernobylsky, T., Ron, A., Katzir, R., Shimon, D., Tessler, A., Adir, O., Meyer, T., Krivitsky, A., Shidlovsky, N., Madi, A., Ruppin, E., & Mayo, L. (2022). Astrocyte immunometabolic regulation of the tumour microenvironment drives glioblastoma pathogenicity. Brain, 145(9), 3288-3307. https://doi.org/10.1093/brain/awac222
Prinz, M., Masuda, T., Wheeler, M. A., & Quintana, F. J. (2021). Microglia and Central Nervous System–Associated Macrophages—From Origin to Disease Modulation. Annual Review of Immunology, 39, 251. https://doi.org/10.1146/annurev-immunol-093019-110159
Vleeschouwer, S. D., & Bergers, G. (2017). Glioblastoma: To Target the Tumor Cell or the Microenvironment? Codon Publications EBooks, 315–340. https://doi.org/10.15586/codon.glioblastoma.2017.ch16
Thakkar, J. P., Peruzzi, P. P., & Prabhu, V. C. (n.d.). Glioblastoma Multiforme. American Association of Neurological Surgeons. Retrieved July 23, 2023, from https://www.aans.org/en/Patients/Neurosurgical-Conditions-and-Treatments/Glioblastoma-Multiforme
Valdebenito, S., Audia, A., Bhat, K., Okafo, G., & Eugenin, E. A. (2020). Tunneling Nanotubes Mediate Adaptation of Glioblastoma Cells to Temozolomide and Ionizing Radiation Treatment. IScience, 23(9), 101450–101450. https://doi.org/10.1016/j.isci.2020.101450
Venkatesh, V. S., & Lou, E. (2019). Tunneling nanotubes: A bridge for heterogeneity in glioblastoma and a new therapeutic target? Cancer Reports, 2(6). https://doi.org/10.1002/cnr2.1185
Watson, D. C., Bayik, D., Storevik, S., Moreino, S. S., Sprowls, S. A., Han, J., Augustsson, M. T., Lauko, A., Sravya, P., Røsland, G. V., Troike, K., Tronstad, K. J., Wang, S., Sarnow, K., Kay, K., Lunavat, T. R., Silver, D. J., Dayal, S., Joseph, J. V., . . . Lathia, J. D. (2023). GAP43-dependent mitochondria transfer from astrocytes enhances glioblastoma tumorigenicity. Nature Cancer, 4(5), 648-664. https://doi.org/10.1038/s43018-023-00556-5
Yang, F., Zhang, Y., Liu, S., Xiao, J., He, Y., Shao, Z., Zhang, Y., Cai, X., & Xiong, L. (2022). Tunneling Nanotube-Mediated Mitochondrial Transfer Rescues Nucleus Pulposus Cells from Mitochondrial Dysfunction and Apoptosis. Oxidative Medicine and Cellular Longevity, 2022. https://doi.org/10.1155/2022/3613319
Published
How to Cite
Issue
Section
Copyright (c) 2024 Taili Gao
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.