The Role of Astrocytes in Promoting Glioblastoma Pathogenicity

Authors

  • Taili Gao Lexington High School

DOI:

https://doi.org/10.47611/jsrhs.v13i1.6385

Keywords:

astrocytes, glioblastoma, tunneling nanotubes, macrophages, tumor microenvironment

Abstract

For this review, we study the ways that astrocytes lead to increased glioblastoma (GBM) cancer cell survival by interacting with the tumor microenvironment (TME). GBM cells exploit and alter surrounding somatic cells, such as astrocytes, to fuel their growth and metastasis. Astrocytes are the most abundant cells in the central nervous system (CNS) and occupy important roles in maintaining the blood-brain barrier and stabilizing synapses. Tumor-associated astrocytes (TAAs) help tumor progression by interacting with players of the TME. In summary, astrocytes support GBM pathogenicity by transferring mitochondria and cholesterol and directly promoting immunosuppression through the modulation of tumor-associated macrophages (TAMs). Targeting non-GBM cells such as astrocytes, which directly promotes its development, could become a new option for treating the lethal GBM disease. A further understanding of the interaction involved in astrocyte-driven GBM pathogenicity could identify promising molecular targets and effective strategies against GBM.

Downloads

Download data is not yet available.

References or Bibliography

Anderson, N. M., & Simon, M. C. (2020). The tumor microenvironment. Current biology: CB, 30(16), R921–R925. https://doi.org/10.1016/j.cub.2020.06.081

Arifianto, M. R., Meizikri, R., Haq, I. B., Susilo, R. I., Wahyuhadi, J., Hermanto, Y., & Faried, A. (2023). Emerging hallmark of gliomas microenvironment in evading immunity: A basic concept. The Egyptian Journal of Neurology, Psychiatry and Neurosurgery, 59(1), 1-14. https://doi.org/10.1186/s41983-023-00635-5

Cornall, J. (2022, September). New study on astrocytes could lead to drug development for brain cancer. Labiotech.eu; Labiotech UG. https://www.labiotech.eu/trends-news/study-brain-cancer-astrocytes/

Nunno, V. D., Franceschi, E., Tosoni, A., Gatto, L., Bartolini, S., & Brandes, A. A. (2022). Glioblastoma Microenvironment: From an Inviolable Defense to a Therapeutic Chance. Frontiers in oncology, 12, 852950. https://doi.org/10.3389/fonc.2022.852950

Fairley, L. H., Grimm, A., & Eckert, A. (2022). Mitochondria Transfer in Brain Injury and Disease. Cells, 11(22), 3603–3603. https://doi.org/10.3390/cells11223603

Guo, X., Zhou, S., Yang, Z., Li, A., Hu, W., Dai, L., Liang, W., & Wang, X. (2021). Cholesterol metabolism and its implication in glioblastoma therapy. Journal of Cancer, 13(6), 1745-1757. https://doi.org/10.7150/jca.63609

Pantazopoulou, V., Jeannot, P., Rosberg, R., Berg, T. J., & Pietras, A. (2021). Hypoxia-Induced Reactivity of Tumor-Associated Astrocytes Affects Glioma Cell Properties. Cells, 10(3). https://doi.org/10.3390/cells10030613

Perelroizen, R., Philosof, B., Chernobylsky, T., Ron, A., Katzir, R., Shimon, D., Tessler, A., Adir, O., Meyer, T., Krivitsky, A., Shidlovsky, N., Madi, A., Ruppin, E., & Mayo, L. (2022). Astrocyte immunometabolic regulation of the tumour microenvironment drives glioblastoma pathogenicity. Brain, 145(9), 3288-3307. https://doi.org/10.1093/brain/awac222

Prinz, M., Masuda, T., Wheeler, M. A., & Quintana, F. J. (2021). Microglia and Central Nervous System–Associated Macrophages—From Origin to Disease Modulation. Annual Review of Immunology, 39, 251. https://doi.org/10.1146/annurev-immunol-093019-110159

Vleeschouwer, S. D., & Bergers, G. (2017). Glioblastoma: To Target the Tumor Cell or the Microenvironment? Codon Publications EBooks, 315–340. https://doi.org/10.15586/codon.glioblastoma.2017.ch16

Thakkar, J. P., Peruzzi, P. P., & Prabhu, V. C. (n.d.). Glioblastoma Multiforme. American Association of Neurological Surgeons. Retrieved July 23, 2023, from https://www.aans.org/en/Patients/Neurosurgical-Conditions-and-Treatments/Glioblastoma-Multiforme

Valdebenito, S., Audia, A., Bhat, K., Okafo, G., & Eugenin, E. A. (2020). Tunneling Nanotubes Mediate Adaptation of Glioblastoma Cells to Temozolomide and Ionizing Radiation Treatment. IScience, 23(9), 101450–101450. https://doi.org/10.1016/j.isci.2020.101450

Venkatesh, V. S., & Lou, E. (2019). Tunneling nanotubes: A bridge for heterogeneity in glioblastoma and a new therapeutic target? Cancer Reports, 2(6). https://doi.org/10.1002/cnr2.1185

Watson, D. C., Bayik, D., Storevik, S., Moreino, S. S., Sprowls, S. A., Han, J., Augustsson, M. T., Lauko, A., Sravya, P., Røsland, G. V., Troike, K., Tronstad, K. J., Wang, S., Sarnow, K., Kay, K., Lunavat, T. R., Silver, D. J., Dayal, S., Joseph, J. V., . . . Lathia, J. D. (2023). GAP43-dependent mitochondria transfer from astrocytes enhances glioblastoma tumorigenicity. Nature Cancer, 4(5), 648-664. https://doi.org/10.1038/s43018-023-00556-5

Yang, F., Zhang, Y., Liu, S., Xiao, J., He, Y., Shao, Z., Zhang, Y., Cai, X., & Xiong, L. (2022). Tunneling Nanotube-Mediated Mitochondrial Transfer Rescues Nucleus Pulposus Cells from Mitochondrial Dysfunction and Apoptosis. Oxidative Medicine and Cellular Longevity, 2022. https://doi.org/10.1155/2022/3613319

Published

02-29-2024

How to Cite

Gao, T. (2024). The Role of Astrocytes in Promoting Glioblastoma Pathogenicity. Journal of Student Research, 13(1). https://doi.org/10.47611/jsrhs.v13i1.6385

Issue

Section

HS Review Articles