Therapeutic Targeting of KRAS Oncogene in Pancreatic Ductal Adenocarcinoma (PDAC)

Authors

  • Jeffrey Song Monta Vista High School

DOI:

https://doi.org/10.47611/jsrhs.v13i1.6375

Keywords:

RAS signaling, Pancreatic ductal adenocarcinoma (PDAC), cancer therapy, RAS inhibitors, combination therapy, immunology microenvironment.

Abstract

Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive lethal malignancy due to lack of early diagnosis, rapid progression, and limited response to treatment. It accounts for more than 90% of pancreatic cancer cases. It was discovered that about 85% of these patients harbor mutations in the Kirsten Rat Sarcoma viral oncogene homolog (KRAS) gene. These findings position the KRAS gene as the primary target for PDAC inhibitor development. Furthermore, the KRAS gene can also be used as a hallmark for diagnosis and an indicator of the prognosis for PDAC. In this review, the recent advancements in understanding the molecular basis of PDAC, treatment strategies, as well as clinical trials in progress are thoroughly evaluated through a review of the literature and a comparison of clinical trial outcomes.

Downloads

Download data is not yet available.

References or Bibliography

Akce, M., Zaidi, M. Y., Waller, E. K., El‐Rayes, B. F., & Lesinski, G. B. (2018). The potential of CAR T cell therapy in pancreatic cancer. Frontiers in Immunology, 9. https://doi.org/10.3389/fimmu.2018.02166

Ambrogio, C., Köhler, J., Zhou, Z. W., Wang, H., Paranal, R. M., Li, J., Capelletti, M., Caffarra, C., Li, S., Lv, Q., Gondi, S., Hunter, J. C., Liu, J., Chiarle, R., Santamarı́A, D., Westover, K. D., & Jänne, P. A. (2018). KRAS Dimerization Impacts MEK Inhibitor Sensitivity and Oncogenic Activity of Mutant KRAS. Cell, 172(4), 857-868.e15. https://doi.org/10.1016/j.cell.2017.12.020

Arbour, K. C., Punekar, S. R., Garrido–Laguna, I., Hong, D. S., Wolpin, B. M., Pelster, M., Barve, M., Starodub, A., Sommerhalder, D., Chang, S., Zhang, Y., Salman, Z., Wang, X., Gustafson, C. E., & Spira, A. I. (2023). 652O Preliminary clinical activity of RMC-6236, a first-in-class, RAS-selective, tri-complex RAS-MULTI(ON) inhibitor in patients with KRAS mutant pancreatic ductal adenocarcinoma (PDAC) and non-small cell lung cancer (NSCLC). Annals of Oncology, 34, S458. https://doi.org/10.1016/j.annonc.2023.09.1838

Athuluri-Divakar, S. K., Carpió, R. V., Dutta, K., Baker, S. J., Cosenza, S. C., Basu, I., Gupta, Y., Reddy, M. V. R., Ueno, L., Hart, J. R., Vogt, P. K., Mulholland, D. J., Guha, C., Aggarwal, A. K., & Reddy, E. P. (2016). A Small Molecule RAS-Mimetic Disrupts RAS Association with Effector Proteins to Block Signaling. Cell, 165(3), 643–655. https://doi.org/10.1016/j.cell.2016.03.045

Bar‐Sagi, D., & Feramisco, J. R. (1986). Induction of Membrane Ruffling and Fluid-Phase Pinocytosis in Quiescent Fibroblasts by ras Proteins. Science, 233(4768), 1061–1068. https://doi.org/10.1126/science.3090687

Bekaii‐Saab, T., Spira, A. I., Yaeger, R., Buchschacher, G. L., McRee, A. J., Sabari, J. K., Johnson, M. L., Barve, M., Hafez, N., Velastegui, K., Christensen, J. G., Kheoh, T., Der-Torossian, H., & Rybkin, I. I. (2022). KRYSTAL-1: Updated activity and safety of adagrasib (MRTX849) in patients (Pts) with unresectable or metastatic pancreatic cancer (PDAC) and other gastrointestinal (GI) tumors harboring a KRASG12C mutation. Journal of Clinical Oncology, 40(4_suppl), 519. https://doi.org/10.1200/jco.2022.40.4_suppl.519

Balachandran VP. The next generation of vaccination approaches to the treatment of cancer: mRNA and designer cancer vaccines. Presented at SSO 2023 – International Conference on Surgical Cancer Care. March 22-25, 2023.

Borghaei, H., Paz‐Ares, L., Horn, L., Spigel, D. R., Steins, M., Ready, N., Chow, L. Q., Vokes, E. E., Felip, E., Holgado, E., Barlési, F., Kohlhufl, M., Arrieta, Ó., Burgio, M. A., Fayette, J., Léna, H., Poddubskaya, E., Gerber, D. E., Gettinger, S., . . . Brahmer, J. R. (2015). Nivolumab versus Docetaxel in Advanced Nonsquamous Non–Small-Cell Lung Cancer. The New England Journal of Medicine, 373(17), 1627–1639. https://doi.org/10.1056/nejmoa1507643

Bos, J. L., Rehmann, H., & Wittinghofer, A. (2007). GEFS and GAPS: Critical elements in the control of small G proteins. Cell, 129(5), 865–877. https://doi.org/10.1016/j.cell.2007.05.018

Boutin, A. T., Liao, W. T., Wang, M., Hwang, S., Karpinets, T. V., Cheung, H., Chu, G. C., Jiang, S., Hu, J., Chang, K., Vilar, E., Song, X., Zhang, J., Kopetz, S., Futreal, A., Wang, Y. A., Kwong, L. N., & DePinho, R. A. (2017). Oncogenic Kras drives invasion and maintains metastases in colorectal cancer. Genes & Development, 31(4), 370–382. https://doi.org/10.1101/gad.293449.116

Burns, M. C., Sun, Q., Daniels, R. N., Camper, D. V., Kennedy, J. P., Phan, J., Olejniczak, E. T., Lee, T., Waterson, A. G., Rossanese, O. W., & Fesik, S. W. (2014). Approach for targeting Ras with small molecules that activate SOS-mediated nucleotide exchange. Proceedings of the National Academy of Sciences of the United States of America, 111(9), 3401–3406. https://doi.org/10.1073/pnas.1315798111

Castells-Roca, L., Tejero, E., Rodríguez-Santiago, B., & Surrallés, J. (2021). CRISPR screens in synthetic lethality and combinatorial therapies for cancer. Cancers, 13(7), 1591. https://doi.org/10.3390/cancers13071591

Cerami, E., Gao, J., Doğrusöz, U., Groß, B., Sumer, S. O., Aksoy, B. A., Jacobsen, A., Byrne, C. J., Heuer, M., Larsson, E., Antipin, Y., Reva, B., Goldberg, A. P., Sander, C., & Schultz, N. (2012). The CBIO Cancer Genomics Portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discovery, 2(5), 401–404. https://doi.org/10.1158/2159-8290.cd-12-0095

Chen, Y. P., LaMarche, M. J., Chan, H. M., Fekkes, P., Garcı́a-Fortanet, J., Acker, M. G., Antonakos, B., Chen, C. H., Chen, Z., Cooke, V. G., Dobson, J. R., Deng, Z., Feng, F., Firestone, B., Fodor, M., Fridrich, C., Gao, H., Grunenfelder, D., Hao, H., . . . Fortin, P. D. (2016). Allosteric inhibition of SHP2 phosphatase inhibits cancers driven by receptor tyrosine kinases. Nature, 535(7610), 148–152. https://doi.org/10.1038/nature18621

Coelho, M. A., De Carné Trécesson, S., Rana, S., Zecchin, D., Moore, C., Molina‐Arcas, M., East, P., Spencer‐Dene, B., Nye, E., Barnouin, K., Snijders, A. P., Lai, W. S., Blackshear, P. J., & Downward, J. (2017). Oncogenic RAS signaling promotes tumor immunoresistance by stabilizing PD-L1 mRNA. Immunity, 47(6), 1083-1099.e6. https://doi.org/10.1016/j.immuni.2017.11.016

Collisson, E. A., Trejo, C. L., Silva, J. M., Gu, S., Korkola, J. E., Heiser, L. M., Charles, R., Rabinovich, B. A., Hann, B., Dankort, D., Spellman, P. T., Phillips, W. A., Gray, J. W., & McMahon, M. (2012). A central role for RAF→MEK→ERK signaling in the genesis of pancreatic ductal adenocarcinoma. Cancer Discovery, 2(8), 685–693. https://doi.org/10.1158/2159-8290.cd-11-0347

Dhawan, N., Scopton, A., & Dar, A. C. (2016). Small molecule stabilization of the KSR inactive state antagonizes oncogenic Ras signalling. Nature, 537(7618), 112–116. https://doi.org/10.1038/nature19327

Earl, J., García-Nieto, S., Martínez-Ávila, J. C., Montáns, J., Sanjuánbenito, A., Rodríguez-Garrote, M., Lisa, E., Mendía, E., Lobo, E., Malats, N., Carrato, A., & Ponce, C. G. (2015). Circulating tumor cells (CTC) and KRAS mutant circulating free DNA (cfDNA) detection in peripheral blood as biomarkers in patients diagnosed with exocrine pancreatic cancer. BMC Cancer, 15(1). https://doi.org/10.1186/s12885-015-1779-7

End, D. W., Smets, G., Todd, A. V., Applegate, T., Fuery, C. J., Angibaud, P., Venet, M., Sanz, G., Poignet, H., Skrzat, S., DeVine, A., Wouters, W., & Bowden, C. L. (2001b). Characterization of the antitumor effects of the selective farnesyl protein transferase inhibitor R115777 in vivo and in vitro. PubMed, 61(1), 131–137. https://pubmed.ncbi.nlm.nih.gov/11196150

Eser, S., Reiff, N., Messer, M., Seidler, B., Gottschalk, K., Dobler, M., Hieber, M., Arbeiter, A., Klein, S., Kong, B., Michalski, C., Schlitter, A. M., Esposito, I., Kind, A., Rad, L., Schnieke, A., Baccarini, M., Alessi, D. R., Rad, R., . . . Saur, D. (2013). Selective requirement of PI3K/PDK1 signaling for KRAS Oncogene-Driven Pancreatic cell plasticity and cancer. Cancer Cell, 23(3), 406–420. https://doi.org/10.1016/j.ccr.2013.01.023

Gimple, R. C., & Wang, X. (2019b). RAS: Striking at the core of the oncogenic circuitry. Frontiers in Oncology, 9. https://doi.org/10.3389/fonc.2019.00965

Guo, J. Y., Teng, X., Laddha, S. V., Ma, S., Van Nostrand, S. C., Yang, Y., Khor, S., Chan, C. S., Rabinowitz, J. D., & White, E. (2016). Autophagy provides metabolic substrates to maintain energy charge and nucleotide pools in Ras-driven lung cancer cells. Genes & Development, 30(15), 1704–1717. https://doi.org/10.1101/gad.283416.116

He, Q., Liu, Z., & Wang, J. (2022). Targeting KRAS in PDAC: A new way to cure it? Cancers, 14(20), 4982. https://doi.org/10.3390/cancers14204982

Issahaku, A. R., Mukelabai, N., Agoni, C., Rudrapal, M., Aldosari, S. M., Almalki, S. G., & Khan, J. (2022). Characterization of the binding of MRTX1133 as an avenue for the discovery of potential KRASG12D inhibitors for cancer therapy. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-22668-1

Jeong, W., Ro, E. J., & Choi, K. (2018). Interaction between Wnt/β-catenin and RAS-ERK pathways and an anti-cancer strategy via degradations of β-catenin and RAS by targeting the Wnt/β-catenin pathway. Npj Precision Oncology, 2(1). https://doi.org/10.1038/s41698-018-0049-y

Ji, H., Ramsey, M. R., Hayes, D. N., Fan, C., McNamara, K., Kozlowski, P., Torrice, C., Wu, M. C., Shimamura, T., Perera, S. A., Liang, M., Cai, D., Naumov, G. N., Bao, L., Contreras, C. M., Li, D., Chen, L., Krishnamurthy, J., Koivunen, J., . . . Wong, K. (2007). LKB1 modulates lung cancer differentiation and metastasis. Nature, 448(7155), 807–810. https://doi.org/10.1038/nature06030

Kaelin, W. G. (2005). The concept of synthetic lethality in the context of anticancer therapy. Nature Reviews Cancer, 5(9), 689–698. https://doi.org/10.1038/nrc1691

Kerr, E., Gaude, E., Turrell, F. K., Frezza, C., & Martins, C. P. (2016). Mutant Kras copy number defines metabolic reprogramming and therapeutic susceptibilities. Nature, 531(7592), 110–113. https://doi.org/10.1038/nature16967

Kemp, S. B., Cheng, N., Markosyan, N., Sor, R., Kim, I., Hallin, J., Shoush, J., Quinones, L., Brown, N. V., Bassett, J. B., Joshi, N., Yuan, S., Smith, M., Vostrejs, W. P., Perez-Vale, K. Z., Kahn, B., Mo, F., Donahue, T. R., Radu, C. G., . . . Stanger, B. Z. (2022b). Efficacy of a Small-Molecule inhibitor of KRASG12D in immunocompetent models of pancreatic cancer. Cancer Discovery, 13(2), 298–311. https://doi.org/10.1158/2159-8290.cd-22-1066

Kim, J., McMillan, E. A., Kim, H., Venkateswaran, N., Makkar, G., Rodriguez‐Canales, J., Villalobos, P., Neggers, J. E., Mendiratta, S., Wei, S., Landesman, Y., Senapedis, W., Baloglu, E., Chow, C., Frink, R. E., Gao, B., Roth, M. G., Minna, J. D., Daelemans, D., . . . White, M. A. (2016). XPO1-dependent nuclear export is a druggable vulnerability in KRAS-mutant lung cancer. Nature, 538(7623), 114–117. https://doi.org/10.1038/nature19771

Klemp, M., Buanes, T., Rosseland, A. R., Bakka, A., Gladhaug, I. P., Søreide, O., Eriksen, J. A., Mlika, M., Baksaas, I., Lothe, R., Sæterdal, I., & Gaudernack, G. (2001). Intradermal ras peptide vaccination with granulocyte-macrophage colony-stimulating factor as adjuvant: Clinical and immunological responses in patients with pancreatic adenocarcinoma. International Journal of Cancer, 92(3), 441–450. https://doi.org/10.1002/ijc.1205

Kole, C., Charalampakis, N., Tsakatikas, S., Frountzas, M., Apostolou, K., & Schizas, D. (2022). Immunotherapy in Combination with Well-Established Treatment Strategies in Pancreatic Cancer: Current Insights. Cancer Management and Research, Volume 14, 1043–1061. https://doi.org/10.2147/cmar.s267260

Koltun, E. S., Rice, M. A., Gustafson, W. C., Wilds, D., Jiang, J., Lee, B. J., Wang, Z., Chang, S., Flagella, M., Mu, Y., Dinglasan, N., Nasholm, N., Evans, J., Wang, Y., Seamon, K. J., Liu, Y., Blaj, C., Knox, J. E., Freilich, R., . . . Singh, M. (2022). Abstract 3597: Direct targeting of KRASG12X mutant cancers with RMC-6236, a first-in-class, RAS-selective, orally bioavailable, tri-complex RASMULTI(ON) inhibitor. Cancer Research, 82(12_Supplement), 3597. https://doi.org/10.1158/1538-7445.am2022-3597

Kottakis, F., Nicolay, B., Roumane, A., Karnik, R., Gu, H., Nagle, J. M., Boukhali, M., Hayward, M. C., Li, Y. Y., Chen, T., Liesa, M., Hammerman, P. S., Wong, K. K., Hayes, D. N., Shirihai, O. S., Dyson, N. J., Haas, W., Meissner, A., & Bardeesy, N. (2016). LKB1 loss links serine metabolism to DNA methylation and tumorigenesis. Nature, 539(7629), 390–395. https://doi.org/10.1038/nature20132

Kumar, M., Hancock, D. C., Molina‐Arcas, M., Steckel, M., East, P., Diefenbacher, M. E., Armenteros-Monterroso, E., Lassailly, F., Matthews, N., Nye, E., Stamp, G., Behrens, A., & Downward, J. (2012). The GATA2 transcriptional network is requisite for RAS Oncogene-Driven Non-Small cell lung cancer. Cell, 149(3), 642–655. https://doi.org/10.1016/j.cell.2012.02.059

Le, D. T., Durham, J. N., Smith, K. N., Wang, H., Bartlett, B. R., Aulakh, L. K., Lu, S., Kemberling, H., Wilt, C., Luber, B., Wong, F., Azad, N. S., Rucki, A. A., Laheru, D., Donehower, R. C., Zaheer, A., Fisher, G. A., Crocenzi, T. S., Lee, J. J., . . . Díaz, L. A. (2017). Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science, 357(6349), 409–413. https://doi.org/10.1126/science.aan6733

Lohmann, S., Wollscheid, U., Huber, C., & Seliger, B. (1996). Multiple Levels of MHC Class I Down‐Regulation by ras Oncogenes. Scandinavian Journal of Immunology, 43(5), 537–544. https://doi.org/10.1046/j.1365-3083.1996.d01-73.x

Luo, J. (2021b). KRAS mutation in pancreatic cancer. Seminars in Oncology, 48(1), 10–18. https://doi.org/10.1053/j.seminoncol.2021.02.003

Loi, S., Dushyanthen, S., Beavis, P. A., Salgado, R., Denkert, C., Savas, P., Combs, S., Rimm, D. L., Giltnane, J. M., Estrada, M. V., Sanchez, V., Sanders, M. E., Cook, R. S., Pilkinton, M. A., Mallal, S., Wang, K., Miller, V. A., Stephens, P. J., Yelensky, R., . . . Balko, J. M. (2016). RAS/MAPK Activation Is Associated with Reduced Tumor-Infiltrating Lymphocytes in Triple-Negative Breast Cancer: Therapeutic Cooperation Between MEK and PD-1/PD-L1 Immune Checkpoint Inhibitors. Clinical Cancer Research, 22(6), 1499–1509. https://doi.org/10.1158/1078-0432.ccr-15-1125

Lu, S., Jang, H., Nussinov, R., & Zhang, J. (2016). The structural basis of oncogenic mutations G12, G13 and Q61 in small GTPaSe K-RAS4B. Scientific Reports, 6(1). https://doi.org/10.1038/srep21949

Markowitz, S. D., & Bertagnolli, M. M. (2009). Molecular basis of colorectal cancer. The New England Journal of Medicine, 361(25), 2449–2460. https://doi.org/10.1056/nejmra0804588

McAllister, F., Bailey, J. M., Alsina, J., Nirschl, C. J., Sharma, R., Fan, H., Rattigan, Y., Roeser, J. C., Lankapalli, R. H., Zhang, H., Jaffee, E. M., Drake, C. G., Housseau, F., Maitra, A., Kolls, J. K., Sears, C. L., Pardoll, D. M., & Leach, S. D. (2014). Oncogenic KRAS activates a Hematopoietic-to-Epithelial IL-17 signaling axis in preinvasive pancreatic neoplasia. Cancer Cell, 25(5), 621–637. https://doi.org/10.1016/j.ccr.2014.03.014

Molina-Arcas, M., Samani, A., & Downward, J. (2021). Drugging the Undruggable: Advances on RAS targeting in cancer. Genes, 12(6), 899. https://doi.org/10.3390/genes12060899

Moore, A. R., Rosenberg, S., McCormick, F., & Malek, S. (2020). RAS-targeted therapies: is the undruggable drugged? Nature Reviews Drug Discovery, 19(8), 533–552. https://doi.org/10.1038/s41573-020-0068-6

Nichols, R. J., Haderk, F., Stahlhut, C., Schulze, C. J., Hemmati, G., Wildes, D., Tzitzilonis, C., Mordec, K., Marquez, A., Romero, J. M., Hsieh, T., Zaman, A., Olivas, V., McCoach, C. E., Blakely, C. M., Wang, Z., Kiss, G., Koltun, E. S., Gill, A. L., . . . Bivona, T. G. (2018). RAS nucleotide cycling underlies the SHP2 phosphatase dependence of mutant BRAF-, NF1- and RAS-driven cancers. Nature Cell Biology, 20(9), 1064–1073. https://doi.org/10.1038/s41556-018-0169-1

Ostrem, J., Peters, U., Sos, M. L., Wells, J. A., & Shokat, K. M. (2013). K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions. Nature, 503(7477), 548–551. https://doi.org/10.1038/nature12796

Palmer, D. H., Valle, J. W., Ting, Y., Faluyi, O. O., Neoptolemos, J. P., Gjertsen, T. J., Iversen, B., Eriksen, J. A., Møller, A. S. W., Aksnes, A., Miller, R. C., & Dueland, S. (2020). TG01/GM-CSF and adjuvant gemcitabine in patients with resected RAS-mutant adenocarcinoma of the pancreas (CT TG01-01): a single-arm, phase 1/2 trial. British Journal of Cancer, 122(7), 971–977. https://doi.org/10.1038/s41416-020-0752-7

Patel, N., Petrinic, T., Silva, M., Soonawalla, Z., Reddy, S., & Gordon-Weeks, A. (2020). The Diagnostic Accuracy of Mutant KRAS Detection from Pancreatic Secretions for the Diagnosis of Pancreatic Cancer: A Meta-Analysis. Cancers, 12(9), 2353. https://doi.org/10.3390/cancers12092353

Pecot, C. V., Wu, S. Y., Bellister, S., Filant, J., Rupaimoole, R., Hisamatsu, T., Bhattacharya, R., Maharaj, A., Azam, S. H., Rodríguez-Aguayo, C., Nagaraja, A. S., Morelli, M. P., Gharpure, K. M., Waugh, T. A., González-Villasana, V., Zand, B., Dalton, H. J., Kopetz, S., López-Berestein, G., . . . Sood, A. K. (2014). Therapeutic silencing of KRAS using systemically delivered siRNAs. Molecular Cancer Therapeutics, 13(12), 2876–2885. https://doi.org/10.1158/1535-7163.mct-14-0074

Prior, I. A., Hood, F. E., & Hartley, J. L. (2020). The frequency of RAS mutations in cancer. Cancer Research, 80(14), 2969–2974. https://doi.org/10.1158/0008-5472.can-19-3682

Punekar, S. R., Velcheti, V., Neel, B. G., & Wong, K. (2022a). The current state of the art and future trends in RAS-targeted cancer therapies. Nature Reviews Clinical Oncology, 19(10), 637–655. https://doi.org/10.1038/s41571-022-00671-9

Qian, Y., Gong, Y., Fan, Z., Luo, G., Huang, Q., Deng, S., He, C., Jin, K., Ni, Q., Lei, Y., & Liu, C. (2020). Molecular alterations and targeted therapy in pancreatic ductal adenocarcinoma. Journal of Hematology & Oncology, 13(1). https://doi.org/10.1186/s13045-020-00958-3

Rak, J., Mitsuhashi, Y., Bayko, L., Filmus, J., Shirasawa, S., Sasazuki, T., & Kerbel, R. S. (1995). Mutant ras oncogenes upregulate VEGF/VPF expression: implications for induction and inhibition of tumor angiogenesis. PubMed, 55(20), 4575–4580. https://pubmed.ncbi.nlm.nih.gov/7553632

Raphael, B. J., Hruban, R. H., Aguirre, A. J., Moffitt, R. A., Yeh, J. J., Stewart, C., Robertson, A. G., Cherniack, A. D., Gupta, M., Getz, G., Gabriel, S., Meyerson, M., Cibulskis, C., Fei, S. S., Hinoue, T., Shen, H., Laird, P. W., Ling, S., Lu, Y., . . . Moore, R. A. (2017). Integrated Genomic Characterization of Pancreatic ductal adenocarcinoma. Cancer Cell, 32(2), 185-203.e13. https://doi.org/10.1016/j.ccell.2017.07.007

Rhim, A. D., Oberstein, P. E., Thomas, D., Mirek, E. T., Palermo, C. F., Sastra, S. A., Dekleva, E. N., Saunders, T., Becerra, C. P., Tattersall, I. W., Westphalen, C. B., Kitajewski, J., Fernández‐Barrena, M. G., Fernández-Zapico, M. E., Iacobuzio–Donahue, C. A., Olive, K. P., & Stanger, B. Z. (2014). Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell, 25(6), 735–747. https://doi.org/10.1016/j.ccr.2014.04.021

Ribas, A., Lawrence, D. P., Atkinson, V., Agarwal, S., Miller, W. H., Carlino, M. S., Fisher, R., Long, G. V., Hodi, F. S., Tsoi, J., Grasso, C. S., Mookerjee, B., Zhao, Q., Ghori, R., Moreno, B. H., Ibrahim, N., & Hamid, O. (2019). Combined BRAF and MEK inhibition with PD-1 blockade immunotherapy in BRAF-mutant melanoma. Nature Medicine, 25(6), 936–940. https://doi.org/10.1038/s41591-019-0476-5

Ryan, D. P., Hong, T. S., & Bardeesy, N. (2014). Pancreatic adenocarcinoma. The New England Journal of Medicine, 371(11), 1039–1049. https://doi.org/10.1056/nejmra1404198

Sanchez-Vega, F., Mina, M., Armenia, J., Chatila, W. K., Luna, A., La, K., Dimitriadoy, S., Liu, D. L., Kantheti, H. S., Saghafinia, S., Chakravarty, D., Daian, F., Gao, Q., Bailey, M. H., Liang, W., Foltz, S. M., Shmulevich, I., Li, D., Heins, Z. J., . . . Schultz, N. (2018). Oncogenic Signaling Pathways in The Cancer Genome Atlas. Cell, 173(2), 321-337.e10. https://doi.org/10.1016/j.cell.2018.03.035

Siegel, R. L., Miller, K. D., Wagle, N. S., & Jemal, A. (2023). Cancer statistics, 2023. CA: A Cancer Journal for Clinicians, 73(1), 17–48. https://doi.org/10.3322/caac.21763

Sparmann, A., & Bar‐Sagi, D. (2004). Ras-induced interleukin-8 expression plays a critical role in tumor growth and angiogenesis. Cancer Cell, 6(5), 447–458. https://doi.org/10.1016/j.ccr.2004.09.028

Srivastava, S., & Riddell, S. R. (2018). Chimeric antigen receptor T cell therapy: Challenges to Bench-to-Bedside efficacy. Journal of Immunology, 200(2), 459–468. https://doi.org/10.4049/jimmunol.1701155

Strickler, J. H., Satake, H., George, T. J., Yaeger, R., Hollebecque, A., Garrido‐Laguna, I., Schüler, M., Burns, T. F., Coveler, A. L., Falchook, G. S., Vincent, M., Sunakawa, Y., Dahan, L., Bajor, D. L., Rha, S. Y., Lemech, C., Juric, D., Rehn, M., Ngarmchamnanrith, G., . . . Hong, D. S. (2023). Sotorasib in KRAS p.G12C–Mutated Advanced Pancreatic Cancer. The New England Journal of Medicine, 388(1), 33–43. https://doi.org/10.1056/nejmoa2208470

Swarthout, J. T., Lobo, S., Farh, L., Croke, M., Greentree, W. K., Deschenes, R. J., & Linder, M. E. (2005). DHHC9 and GCP16 Constitute a Human Protein Fatty Acyltransferase with Specificity for H- and N-Ras. Journal of Biological Chemistry, 280(35), 31141–31148. https://doi.org/10.1074/jbc.m504113200

Sullivan, R. J., Hamid, O., González, R., Infante, J. R., Patel, M. R., Hodi, F. S., Lewis, K. D., Tawbi, H. A., Hernandez, G., Wongchenko, M. J., Chang, Y. M., Roberts, L., Ballinger, M., Yan, Y., Cha, E., & Hwu, P. (2019). Atezolizumab plus cobimetinib and vemurafenib in BRAF-mutated melanoma patients. Nature Medicine, 25(6), 929–935. https://doi.org/10.1038/s41591-019-0474-7

Waddell, N., Pajic, M., Patch, A., Chang, D. K., Kassahn, K. S., Bailey, P. J., Johns, A., Miller, D., Nones, K., Quek, K., Quinn, M. C., Robertson, A. J., Fadlullah, M. Z. H., Bruxner, T., Christ, A. N., Harliwong, I., Idrisoglu, S., Manning, S., Nourse, C., . . . Grimmond, S. M. (2015). Whole genomes redefine the mutational landscape of pancreatic cancer. Nature, 518(7540), 495–501. https://doi.org/10.1038/nature14169

Wang, X., Allen, S. J., Blake, J. F., Bowcut, V., Briere, D. M., Calinisan, A., Dahlke, J., Fell, J. B., Fischer, J. P., Gunn, R. J., Hallin, J., Laguer, J., Lawson, J. D., Medwid, J., Newhouse, B., Nguyen, P., O’Leary, J., Olson, P., Pajk, S., . . . Marx, M. A. (2021). Identification of MRTX1133, a noncovalent, potent, and selective KRASG12D inhibitor. Journal of Medicinal Chemistry, 65(4), 3123–3133. https://doi.org/10.1021/acs.jmedchem.1c01688

Wang, Q. J., Yu, Z., Griffith, K., Hanada, K., Restifo, N. P., & Yang, J. C. (2016). Identification of T-cell receptors targeting KRAS-Mutated human tumors. Cancer Immunology Research, 4(3), 204–214. https://doi.org/10.1158/2326-6066.cir-15-0188

Waters, A. M., & Der, C. J. (2017b). KRAS: the critical driver and therapeutic target for pancreatic cancer. Cold Spring Harbor Perspectives in Medicine, 8(9), a031435. https://doi.org/10.1101/cshperspect.a031435

Weinberg, F., Hamanaka, R. B., Wheaton, W. W., Weinberg, S. E., Joseph, J., López, M., Kalyanaraman, B., Mutlu, G. M., Budinger, G. R. S., & Chandel, N. S. (2010). Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proceedings of the National Academy of Sciences of the United States of America, 107(19), 8788–8793. https://doi.org/10.1073/pnas.1003428107

Wei, X., Yang, J., Adair, S. J., Öztürk, H., Kuscu, C., Lee, K. Y., Kane, W. J., O’Hara, P. E., Liu, D., Demirlenk, Y. M., Habieb, A., Yilmaz, E., Dutta, A., Bauer, T. W., & Adli, M. (2020). Targeted CRISPR screening identifies PRMT5 as synthetic lethality combinatorial target with gemcitabine in pancreatic cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 117(45), 28068–28079. https://doi.org/10.1073/pnas.2009899117

Yang, M. H., Laurent, G., Bause, A. S., Spang, R., German, N. J., Haigis, M. C., & Haigis, K. M. (2013). HDAC6 and SIRT2 regulate the acetylation state and oncogenic activity of mutant K-RAS. Molecular Cancer Research, 11(9), 1072–1077. https://doi.org/10.1158/1541-7786.mcr-13-0040-t

Yang, K., Li, Y., Lian, G., Lin, H., Shang, C., Zeng, L., Chen, S., Li, J., Huang, C., Huang, K., & Chen, Y. (2018). KRAS promotes tumor metastasis and chemoresistance by repressing RKIP via the MAPK–ERK pathway in pancreatic cancer. International Journal of Cancer, 142(11), 2323–2334. https://doi.org/10.1002/ijc.31248

Published

02-29-2024

How to Cite

Song, J. (2024). Therapeutic Targeting of KRAS Oncogene in Pancreatic Ductal Adenocarcinoma (PDAC). Journal of Student Research, 13(1). https://doi.org/10.47611/jsrhs.v13i1.6375

Issue

Section

HS Review Articles