Are zinc fingers of α-proteobacteria an important molecular mechanism?

Authors

  • Pola Jakubowicz Adcote School for Girls
  • Mrs Nicola Tribe Deputy Head and Head of Academics at High School

DOI:

https://doi.org/10.47611/jsrhs.v13i1.6318

Keywords:

zinc fingers, α-proteobacteria, Ros/MucR, Cys2His2, nitrogen fixation, endosymbiosis, hydrothermal vents, eukaryogenesis, Fe/S clusters, AlphaFold, CDD, blastp

Abstract

The zinc-finger proteins in α-proteobacteria are considered to be the precursors of zinc fingers in higher Eukaryotes, due to their structural similarities and the crucial role played by α-proteobacteria during eukaryogenesis. Since they interact with macromolecules, their emergence in Bacteria, and later in the Eukarya, provided those organisms with major functional upgrades and evolutionary advantages. Hence, the aim of this research is to prove the important role of α-proteobacterial zinc fingers in this taxon, and the significance of their relics, present in higher Eukaryotes. A part of this investigation involved identifying similar zinc-finger proteins between α-proteobacteria and humans using the blastp algorithm, finding their shared domains in the CDD database, and modelling their structures in the ChimeraX programme. The remaining research objectives were reached by analysing data from pre-existing studies, in order to come up with an additional set of conclusions, relevant to this investigation. It was established that the Ros/MucR zinc-finger proteins regulate many pathways, crucial for the survival of α-proteobacteria and their interactions with Eukaryotes. Additionally, it was found that many zinc-finger proteins supply α-proteobacteria with eukaryotic mechanisms, which differentiate them from other bacterial taxa. It was also concluded that α-proteobacterial zinc fingers may be responsible for the resistance of α-proteobacteria to certain heavy metals. This investigation also proposes a new evolutionary hypothesis for the emergence of zinc fingers in Proteobacteria, and presents further arguments in favour of the theory that the Eukaryota acquired zinc fingers from α-proteobacteria during eukaryogenesis.

Downloads

Download data is not yet available.

Author Biography

Mrs Nicola Tribe, Deputy Head and Head of Academics at High School

BEng Hons Liverpool John Moores, PGCE Wolverhampton (Science, Maths)

References or Bibliography

References:

Altschul S.F. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25(17), pp. 3389-3402. doi: 10.1093/nar/25.17.3389

Baglivo I. et al. (2018) MucR binds multiple target sites in the promoter of its own gene and is a heat-stable protein. FEBS Open Bio 8(4), pp. 711-718. doi: 10.1002/2211-5463.12411

Bergé M. et al. (2016) Modularity and determinants of a (bi-)polarization control system from free-living and obligate intracellular bacteria. eLife 5. doi: doi.org/10.7554/eLife.20640

Bertani B., Ruiz N. (2018) Function and biogenesis of lipopolysaccharides. EcoSal Plus 8(1). doi: 10.1128/ecosalplus.ESP-0001-2018

Blindauer C.A. (2015) Advances in the molecular understanding of biological zinc transport. Chem. Commun. 51(22), pp. 4544-4563. doi: 10.1039/C4CC10174J

Braun V. (1997) Avoidance of iron toxicity through regulation of bacterial iron transport. Biol. Chem. 378(8), pp. 779-786. PMID: 9377472

Casalino L. (2017) Pre-mRNA Splicing: An Evolutionary Computational Journey from Ribozymes to Spliceosome. Ph.D. thesis, Scuola Internazionale Superiore di Studi Avanzati (SISSA). Available at: https://iris.sissa.it/handle/20.500.11767/59221 [accessed: 6 June 2023].

Caswell C.C. et al. (2013) Diverse Genetic Regulon of the Virulence-Associated Transcriptional Regulator MucR in Brucella abortus 2308. Infect. Immun. 81(4), pp. 1040-1051. doi: 10.1128/IAI.01097-12

Cerqueira T. et al. (2015) Microbial diversity in deep-sea sediments from the Menez Gwen hydrothermal vent system of the Mid-Atlantic Ridge. Mar. Genomics 24(3), pp. 343-55. doi: 10.1016/j.margen.2015.09.001

Chen H. et al. (2000) Structure of a (Cys3His) zinc ribbon, a ubiquitous motif in archaeal and eucaryal transcription. Protein Sci. 9(9), pp. 1743-1752. doi: 10.1110/ps.9.9.1743

Chou A.Y., Archdeacon J., Kado C.I. (1998) Agrobacterium transcriptional regulator Ros is a prokaryotic zinc finger protein that regulates the plant oncogene ipt. Proc. Natl. Acad. Sci. U.S.A. 95(9), pp. 5293-5298. doi: 10.1073/pnas.95.9.5293

Cohen N. R. et al. (2021) Hydrothermal trace metal release and microbial metabolism in the northeastern Lau Basin of the South Pacific Ocean. Biogeosciences 18, pp. 5397-5422. doi: 10.5194/bg-18-5397-2021

Cooley M.B., D'Souza M.R., Kado C.I. (1991) The virC and virD Operons of the Agrobacterium Ti Plasmid Are Regulated by the ros Chromosomal Gene. J. Bacteriol. 173(8), pp. 2608-2616. doi: 10.1128/jb.173.8.2608-2616.1991

D’Abrosca G. et al. (2020) Structural Insight of the Full-Length Ros Protein: A Prototype of the Prokaryotic Zinc-Finger Family. Sci. Rep. 10. doi: 10.1038/s41598-020-66204-5

de Lencastre A., Hamill S., Pyle A. (2005) A single active-site region for a group II intron. Nat. Struct. Mol. Biol. 12, pp. 626-627. doi: 10.1038/nsmb957

Deng S. (2021) Phosphorus and selected metals and metalloids. In: Gentry T., Zauberer D., Fuhrmann J. Principles and Applications of Soil Microbiology. 3rd ed. Amsterdam: Elsevier, pp. 523-555. ISBN: 9780323851404

Doku R.T. et al. (2013) Spectroscopic characterization of copper(I) binding to apo and metal-reconstituted zinc finger peptides. J. Biol. Inorg. Chem. 18, pp. 669-678. doi: 10.1007/s00775-013-1012-6

Dragone M. et al. (2022) Copper (I) or (II) Replacement of the Structural Zinc Ion in the Prokaryotic Zinc Finger Ros Does Not Result in a Functional Domain. Int. J. Mol. Sci. 23(19). doi: 10.3390/ijms231911010

Eom K., Cheong J., Lee S. (2016) Structural Analyses of Zinc Finger Domains for Specific Interactions with DNA. J. Microbiol. Biotechnol. 26(12), pp. 2019-2029. doi: 10.4014/jmb.1609.09021

Esposti M.D. et al. (2018) From Alphaproteobacteria to Proto-Mitochondria. In: Phylogeny and Evolution of Bacteria and Mitochondria. 1st edition. Boca Raton: CRC Press. ISBN: 9781315144498

Farias P. et al. (2015) Natural Hot Spots for Gain of Multiple Resistances: Arsenic and Antibiotic Resistances in Heterotrophic, Aerobic Bacteria from Marine Hydrothermal Vent Fields. Appl. Environ. Microbiol. 81(7), pp. 2534-2543. doi: 10.1128/AEM.03240-14

Fatnassi I.C. et al. (2015) Impact of dual inoculation with Rhizobium and PGPR on growth and antioxidant status of Vicia faba L. under copper stress. C. R. Biol. 338(4), pp. 241-254. doi: 10.1016/j.crvi.2015.02.001

Gomes N.C.M. et al. (2010) Effects of Cd- and Zn-enriched sewage sludge on soil bacterial and fungal communities. Ecotoxicol. Environ. Saf. 73(6), pp. 1255-1263. doi: 10.1016/j.ecoenv.2010.07.027

Jian L. et al. (2019) Promotion of growth and metal accumulation of alfalfa by coinoculation with Sinorhizobium and Agrobacterium under copper and zinc stress. PeerJ 7. doi: 10.7717/peerj.6875

Jiao J. et al. (2016) MucR Is Required for Transcriptional Activation of Conserved Ion Transporters to Support Nitrogen Fixation of Sinorhizobium fredii in Soybean Nodules. Mol. Plant Microbe Interact. 29(5), pp. 352-361. doi: doi.org/10.1094/MPMI-01-16-0019-R

Jiao J. et al. (2022) The zinc-finger bearing xenogeneic silencer MucR in α-proteobacteria balances adaptation and regulatory integrity. ISME J. 16, pp. 738-749. doi: 10.1038/s41396-021-01118-2

Jiao J., Tian C.F. (2020) Ancestral zinc-finger bearing protein MucR in alpha-proteobacteria: A novel xenogeneic silencer? Comput. Struct. Biotechnol. J. 18, pp. 3623-3631. doi: 10.1016/j.csbj.2020.11.028

Kamboch B. (2020) Why Fe3+ is more stable than Fe2+? UO Chemists. Available at: https://www.uochemists.com/fe3-is-more-stable/ [accessed: 20 February 2023].

Kluska K., Adamczyk J., Krężel A. (2018) Metal binding properties, stability and reactivity of zinc fingers. Coord. Chem. Rev. 367, pp. 18-64. doi: 10.1016/j.ccr.2018.04.009

Krishna S.S., Aravind L. (2010) The bridge-region of the Ku superfamily is an atypical zinc ribbon domain. J. Struct. Biol. 172(3), pp. 294-299. doi: 10.1016/j.jsb.2010.05.011

Krishna S.S., Majumdar I., Grishin N.V. (2003) Structural classification of zinc fingers: SURVEY AND SUMMARY. Nucleic Acids Res. 31(2), pp. 532-550. doi: 10.1093/nar/gkg161

Liu N. et al. (2022) Specific bacterial communities in the rhizosphere of low-cadmium and high‑zinc wheat (Triticum aestivum L.). Sci. Total Environ. 838(3). doi: 10.1016/j.scitotenv.2022.156484

Llamas I. et al. (2010) Characterization of the Exopolysaccharide Produced by Salipiger mucosus A3T, a Halophilic Species Belonging to the Alphaproteobacteria, Isolated on the Spanish Mediterranean Seaboard. Mar. Drugs 8(8), pp. 2240-2251. doi: 10.3390/md8082240

Lorenz L. et al. (2006) Response of microbial activity and microbial community composition in soils to long-term arsenic and cadmium exposure. Soil Biol. Biochem. 38(6), pp. 1430-1437. doi: 10.1016/j.soilbio.2005.10.020

Malgieri G. et al. (2015) The prokaryotic zinc‐finger: structure, function and comparison with the eukaryotic counterpart. FEBS J. 282(23), pp. 4480-4496. doi: 10.1111/febs.13503

Malgieri G. et al. (2014) Zinc to cadmium replacement in the prokaryotic zinc-finger domain. Metallomics 6(1), pp. 96-104. doi: 10.1039/c3mt00208j

Marchler-Bauer A. et al. (2017) CDD/SPARCLE: functional classification of proteins via subfamily domain architectures. Nucleic Acids Res. 45(D1), pp. D200-D203. doi: 10.1093/nar/gkw1129

Martin W. et al. (2008) Hydrothermal vents and the origin of life. Nat. Rev. Microbiol. 6, pp. 805-814. doi: 10.1038/nrmicro1991

Martínez-Abarca F., Toro N. (2000) Group II introns in the bacterial world. Mol. Microbiol. 38(5), pp. 917-926. doi: 10.1046/j.1365-2958.2000.02197.x

Mignolet J. et al. (2016) Functional dichotomy and distinct nanoscale assemblies of a cell cycle-controlled bipolar zinc-finger regulator. eLife 5. doi: 10.7554/eLife.18647

Mirdita M. et al. (2022) ColabFold: making protein folding accessible to all. Nat. Methods 19, pp. 679-682. doi: 10.1038/s41592-022-01488-1

Moreira D., Rodrı́guez-Valera F. (2000) A mitochondrial origin for eukaryotic C2H2 zinc finger regulators? Trends Microbiol. 8(10), pp. 448-449. doi: 10.1016/s0966-842x(00)01850-3

National Center for Biotechnology Information (2023) Conserved Domain Search. Available at: https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi [accessed: 20 February 2023].

National Center for Biotechnology Information (2023) Taxonomy browser (root). Available at:

https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi [accessed: 20 February 2023].

Netti F. et al. (2013) An Experimentally Tested Scenario for the Structural Evolution of Eukaryotic Cys2His2 Zinc Fingers from Eubacterial Ros Homologs. Mol. Biol. Evol. 30(7), pp. 1504-1513. doi: 10.1093/molbev/mst068

Nwodo U.U., Green E., Okoh A.I. (2012) Bacterial exopolysaccharides: functionality and prospects. Int. J. Mol. Sci. 13(11), pp. 14002-14015. doi: 10.3390/ijms131114002

Py B., Barras F. (2010) Building Fe–S proteins: bacterial strategies. Nat. Rev. Microbiol. 8. doi: 10.1038/nrmicro2356

Ramelot T. et al. (2004) Solution NMR Structure of the Iron–Sulfur Cluster Assembly Protein U (IscU) with Zinc Bound at the Active Site. J. Mol. Biol. 344(2), pp. 567-583. doi: 10.1016/j.jmb.2004.08.038

Richards T.A., Archibald J.M. (2011) Cell Evolution: Gene Transfer Agents and the Origin of Mitochondria. Curr. Biol. 21(3), pp. 112-114. doi: 10.1016/j.cub.2010.12.036

Roth D.B. (2015) V(D)J Recombination: Mechanism, Errors, and Fidelity. In: Craig N.L. eds. Mobile DNA III. 3rd edition. Washington, D.C.: ASM Press, pp. 311-324. doi: 10.1128/microbiolspec.MDNA3-0041-2014

Salam L.B. et al. (2020) Effects of cadmium perturbation on the microbial community structure and heavy metal resistome of a tropical agricultural soil. Bioresour. Bioprocess. 7(1). doi: 10.1186/s40643-020-00314-w

Shannon R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. A32(5), pp. 751-767. doi: 10.1107/S0567739476001551

Shimberg G.D. et al. (2016) Cleavage and polyadenylation specificity factor 30: AnRNA-binding zinc-finger protein with an unexpected 2Fe–2S cluster. Proc. Natl. Acad. Sci. U.S.A. 113(17), pp. 4700-4705. doi: 10.1073/pnas.1517620113

Shu W. et al. (2012) Abundance and diversity of nitrogen-fixing bacteria in rhizosphere and bulk paddy soil under different duration of organic management. World J. Microbiol. Biotechnol. 28, pp. 493-503. doi: 10.1007/s11274-011-0840-1

Sun J. et al. (2021) Deletion of the Transcriptional Regulator MucR in Brucella canis Affects Stress Responses and Bacterial Virulence. Front. Vet. Sci. 8. doi: 10.3389/fvets.2021.650942

Tahirov T.H. et al. (2009) Evolution of DNA polymerases: an inactivated polymerase-exonuclease module in Pol ε and a chimeric origin of eukaryotic polymerases from two classes of archaeal ancestors. Biol. Direct. 4(11). doi: 10.1186/1745-6150-4-11

Wagner A. et al. (2017) Mechanisms of gene flow in archaea. Nat. Rev. Microbiol. 15, pp. 492-501. doi: 10.1038/nrmicro.2017.41

Wagner S.C. (2011) Biological Nitrogen Fixation. Nature Education Knowledge 3(10). Available at: https://www.nature.com/scitable/knowledge/library/biological-nitrogen-fixation-23570419/ [accessed: 20 February 2023].

Waldron K., Robinson N. (2009) How do bacterial cells ensure that metalloproteins get the correct metal?. Nat. Rev. Microbiol. 7, pp. 25-35. doi: 10.1038/nrmicro2057

Wang Y. et al. (2008) Assessment of microbial activity and bacterial community composition in the rhizosphere of a copper accumulator and a non-accumulator. Soil Biol. Biochem. 40(5), pp. 1167-1177. doi: 10.1016/j.soilbio.2007.12.010

Wyszkowska J. et al. (2013) Effect of cadmium, copper and zinc on plants, soil microorganisms and soil enzymes. J. Elem. 18(4), pp. 769-796. doi: 10.5601/jelem.2013.18.4.455

Yu X. et al. (2021) Cadmium Pollution Impact on the Bacterial Community Structure of Arable Soil and the Isolation of the Cadmium Resistant Bacteria. Front. Microbiol. 12. doi: 10.3389/fmicb.2021.698834

Zhiguo E., Wang L., Zhou J. (2013) Splicing and alternative splicing in rice and humans. BMB Rep. 46(9), pp. 439-47. doi: 0.5483/BMBRep.2013.46.9.161

Bibliography:

Fraser C.M., Read T.D., Nelson K.E. (2014) Microbial Genomes. 1st edition. Totowa: Humana Press. ISBN: 1588291898

Gargaud M., López-Garcìa P., Martin H. (2011) Origins and Evolution of Life: An Astrobiological Perspective. Cambridge: Cambridge University Press. ISBN: 9780521761314

Kahl G. (2001) The Dictionary of Gene Technology: Genomics, Transcriptomics, Proteomics. 2nd edition. Weinheim: Wiley-VCH. ISBN: 3527307656

Latchman D.S. (1995) Eukaryotic Transcription Factors. 2nd edition. London: Academic Press. doi: 10.1042/bj2700281

Liu J. (2018) Zinc Finger Proteins: Methods and Protocols. 1st edition. Totowa: Humana Press. ISBN: 1493993925

Lucchesi J.C. (2019) Epigenetics, Nuclear Organization & Gene Function: With implications of epigenetic regulation and genetic architecture for human development and health. 1st edition. Oxford: Oxford University Press. ISBN: 9780198831204

Rédei G.P. (2008) Encyclopedia of Genetics, Genomics, Proteomics, and Informatics: Proteomics, Volume 6. 3rd edition. Berlin: Springer Science+Business Media. doi: 10.1007/978-1-4020-6754-9

Rosenberg E., eds. (2014) The Prokaryotes: Alphaproteobacteria and Betaproteobacteria, Volume 8. 4th edition. Berlin: Springer. ISBN: 9783642301964

Weiner J., Weiner (3) J. (2018) Technika pisania i prezentowania przyrodniczych prac naukowych. 5th edition. Warszawa: Polskie Wydawnictwo Naukowe PWN. EAN: 9788301200404

Węgleński P. (2006) Genetyka molekularna. 6th edition. Warszawa: Polskie Wydawnictwo Naukowe PWN. ISBN: 9788301147440

Published

02-29-2024

How to Cite

Jakubowicz, P., & Tribe, N. (2024). Are zinc fingers of α-proteobacteria an important molecular mechanism?. Journal of Student Research, 13(1). https://doi.org/10.47611/jsrhs.v13i1.6318

Issue

Section

HS Research Projects