An Interpretable Machine Learning Model for Heart Arrhythmia Classification

Authors

  • Karthik Vedula Poolesville High School

DOI:

https://doi.org/10.47611/jsrhs.v13i1.6291

Keywords:

Interpretability, Explainability, Heart Arrhythmia, Deep k-Nearest Neighbors, Uncertainty Estimation, ECGs, Machine Learning, Artificial Intelligence

Abstract

Machine learning (ML) has been a very effective tool for arrhythmia detection and classification using electrocardiograms (ECGs). However, in order for patients and healthcare professionals to trust the ML models, the models have to be interpretable to show how they arrived at a certain conclusion. We present an ML model that uses the Deep k-Nearest Neighbors framework in order to produce example-based explanations and uncertainty estimations. These examples are ECGs similar to the input derived from conducting a nearest neighbor search on encoded samples (which are values of a layer of the neural network after passing dataset samples through it). We introduce a new technique of using these example-based explanations in conjunction with saliency maps, and also use a neighbor-based uncertainty estimation technique. We show that the saliency maps provide good explanations, but the neighbor examples are needed to assess the credibility of those saliency maps. Our uncertainty estimations increase the accuracy of the model from 86% to 93% (when measured with coverage of 76%). Overall, our novel methods prove to be a promising solution in the field of interpretable ML for arrhythmia classification.

Downloads

Download data is not yet available.

References or Bibliography

Desai DS, Hajouli S. Arrhythmias. [Updated 2022 Jun 11]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK558923/

Atrial Fibrillation. (2022, October). Centers for Disease Control and Prevention (CDC). Retrieved January 27, 2023, from https://www.cdc.gov/heartdisease/atrial_fibrillation.htm

Odutayo A., Wong C.X., Hsiao A.J., Hopewell S., Altman U.G., A Emdin C. Atrial fibrillation and risks of cardiovascular disease, renal disease, and death: Systematic review and meta-analysis. BMJ. 2016;354:i4482. doi: 10.1136/bmj.i4482.

Ahmed N, Zhu Y. Early Detection of Atrial Fibrillation Based on ECG Signals. Bioengineering (Basel). 2020 Feb 13;7(1):16. doi: 10.3390/bioengineering7010016. PMID: 32069949; PMCID: PMC7148541.

Holter monitor. (n.d.). Mayo Clinic. Retrieved January 27, 2023, from https://www.mayoclinic.org/tests- procedures/holter-monitor/about/pac-20385039

S. Osowski, L. T. Hoai and T. Markiewicz, "Support vector machine-based expert system for reliable heartbeat recognition," in IEEE Transactions on Biomedical Engineering, vol. 51, no. 4, pp. 582-589, April 2004, doi: 10.1109/TBME.2004.824138.

ECG (electrocardiogram). (2022, January 28). Cancer Research UK. Retrieved January 27, 2023, from https://www.cancerresearchuk.org/about-cancer/tests-and-scans/ecg

Electrocardiogram (ECG or EKG). (n.d.). Seattle Children’s. Retrieved January 27, 2023, from https://www.seattlechildrens.org/clinics/heart/what-to-expect/electrocardiogram/

Trayanova, N. A., Popescu, D. M., & Shade, J. K. (2021). Machine learning in arrhythmia and electrophysi- ology. Circulation Research, 128(4). doi:10.1161/CIRCRESAHA.120.317872

Rajpurkar, P., Hannun, A. Y., Haghpanahi, M., Bourn, C., & Ng, A. Y. (2017). Cardiologist-Level Arrhythmia Detection with Convolutional Neural Networks. doi:10.48550/ARXIV.1707.01836

Alfaras, M., Soriano, M., & Ortín, S. (07 2019). A Fast Machine Learning Model for ECG-Based Heartbeat Classification and Arrhythmia Detection. Frontiers in Physics, 7. doi:10.3389/fphy.2019.00103

Rezaei, M. J., Woodward, J. R., Ramírez, J., & Munroe, P. (2021). A Novel Two-Stage Heart Arrhythmia Ensemble Classifier. Computers, 10(5). doi:10.3390/computers10050060

Isin, A., & Ozdalili, S. (2017). Cardiac arrhythmia detection using deep learning. Procedia Computer Science, 120, 268–275. doi:10.1016/j.procs.2017.11.238

Kolyshkina, I., & Simoff, S. (05 2021). Interpretability of Machine Learning Solutions in Public Healthcare: The CRISP-ML Approach. Frontiers in Big Data, 4, 660206. doi:10.3389/fdata.2021.660206

Abdullah, T. A. A., Zahid, M. S. M., & Ali, W. (2021). A Review of Interpretable ML in Healthcare: Taxonomy, Applications, Challenges, and Future Directions. Symmetry, 13(12). doi:10.3390/sym13122439

Ahmad, M. A., Eckert, C., & Teredesai, A. (2018, August). Interpretable machine learning in healthcare. In Proceedings of the 2018 ACM international conference on bioinformatics, computational biology, and health informatics (pp. 559-560). doi: 10.1109/ICHI.2018.00095

Gohel, P., Singh, P., & Mohanty, M. (2021). Explainable AI: current status and future directions. doi:10.48550/ARXIV.2107.07045

M. Bodini, M. W. Rivolta and R. Sassi, "Interpretability Analysis of Machine Learning Algorithms in the Detection of ST-Elevation Myocardial Infarction," 2020 Computing in Cardiology, Rimini, Italy, 2020, pp. 1-4, doi: 10.22489/CinC.2020.403.

Bridge, J., Fu, L., Xue, Y., Lip, G. Y. H., & Zheng, Y. (2022). Artificial intelligence to detect abnormal heart rhythm from scanned electrocardiogram tracings. Journal of Arrhythmia, 38(3). doi: 10.1002/joa3.12707

Sager, S., Bernhardt, F., Kehrle, F., Merkert, M., Potschka, A., Meder, B., ... Scholz, E. (12 2021). Expert-enhanced machine learning for cardiac arrhythmia classification. PLOS ONE, 16(12), 1–22. doi:10.1371/journal.pone.0261571

Jo, Y.-Y., Kwon, J.-M., Jeon, K.-H., Cho, Y.-H., Shin, J.-H., Lee, Y.-J., . . . Oh, B.-H. (2021). Detection and classification of arrhythmia using an explainable deep learning model. Journal of Electrocardiology, 67, 124–132. doi:10.1016/j.jelectrocard.2021.06.006

N. Strodthoff, P. Wagner, T. Schaeffter and W. Samek, "Deep Learning for ECG Analysis: Benchmarks and Insights from PTB-XL," in IEEE Journal of Biomedical and Health Informatics, vol. 25, no. 5, pp. 1519-1528, May 2021, doi: 10.1109/JBHI.2020.3022989.

Ayano, Y. M., Schwenker, F., Dufera, B. D., & Debelee, T. G. (2023). Interpretable Machine Learn- ing Techniques in ECG-Based Heart Disease Classification: A Systematic Review. Diagnostics, 13(1). doi:10.3390/diagnostics13010111

Cai, C. J., Jongejan, J., & Holbrook, J. S. (2019). The Effects of Example-Based Explanations in a Machine Learning Interface. doi:10.1145/3301275.3302289

Papernot, N., & McDaniel, P. (2018). Deep k-nearest neighbors: Towards confident, interpretable and robust deep learning. arXiv preprint doi: 10.48550/arXiv.1803.04765

Makowski, D., Pham, T., Lau, Z.J. et al. NeuroKit2: A Python toolbox for neurophysiological signal processing. Behav Res 53, 1689–1696 (2021). https://doi.org/10.3758/s13428-020-01516-y

Published

02-28-2024

How to Cite

Vedula, K. (2024). An Interpretable Machine Learning Model for Heart Arrhythmia Classification. Journal of Student Research, 13(1). https://doi.org/10.47611/jsrhs.v13i1.6291

Issue

Section

HS Research Projects