Circadian and Sleep-Wake Dysfunctions of the Hypothalamus in Alzheimer’s Disease Progression

Authors

  • Angelina Kovalchuk Vanguard High School
  • Joanna Eckhardt

DOI:

https://doi.org/10.47611/jsrhs.v13i1.6274

Keywords:

Alzheimer's Disease, circadian rhythms, circadian dysfunction, sleep-wake dysfunction, hypothalamus, dementia

Abstract

Alzheimer’s disease (AD) is a disorder that causes degeneration of brain cells, cognitive decline, and memory loss. AD is characterized by both the accumulation of tau proteins and the amyloid plaques, which inhibit cell function. Cognitive symptoms are considered manifestations of late-stage AD, though other manifestations such as sleep alterations occur long before these symptoms. Moreover, specific subcortical areas of the brain are affected very early on in AD progression, even before cognitive structures such as the hippocampus. One notable region is the hypothalamus, which regulates circadian rhythms, sleep-wake structure, and other metabolic signals. The hypothalamus is significant in AD progression due to its protective qualities and influence on disease development. This paper investigates the regulation of circadian and sleep-wake cycles within the hypothalamus and how desynchronization may contribute to AD pathogenesis in preclinical and early stages of the disease. Because the hypothalamus is a complex and varied structure, other processes of the hypothalamus are also discussed due to their influence on the sleep-wake cycle. Circadian rhythms also vary among different populations, potentially affecting AD onset. Understanding the influence of circadian and sleep-wake cycles on early AD pathology can provide insight into new interventions and therapeutics preceding later stages of the disease.

Downloads

Download data is not yet available.

References or Bibliography

Breijyeh, Z., & Karaman, R. (2020). Comprehensive Review on Alzheimer's Disease: Causes and Treatment. Molecules, 25(24): 5789. https://doi.org/10.3390/molecules25245789

De-Paula, V, Radanovic, M., Diniz, B., & Forlenza, O. (2012). Alzheimer’s Disease. Protein Aggregation and Fibrillogenesis in Cerebral and Systemic Amyloid Disease: Subcellular Biochemistry, 65: 329–352. https://doi.org/10.1007/978-94-007-5416-4_14

Livingston, G., Huntley, J., Sommerlad, A., Ames, D., Ballard, C., Banerjee, S., Brayne, C., Burns, A., Cohen-Mansfield, J., Cooper, C., Costafreda, S. G., Dias, A., Fox, N., Gitlin, L. N., Howard, R., Kales, H. C., Kivimäki, M., Larson, E. B., Ogunniyi, A., Orgeta, V., Ritchie, K., Rockwood, K., Sampson, E., Samus, Q., Schneider, L., Selbaek, G., Teri, L., Mukadam, N. (2020). Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. The Lancet, 396(10248): 413–446. https://doi.org/10.1016/S0140-6736(20)30367-6

Yiannopoulou, K. G., & Papageorgiou, S. G. (2020). Current and Future Treatments in Alzheimer Disease: An Update. Journal of Central Nervous System Disease, 12. https://doi.org/10.1177/1179573520907397

Hersi, M., Irvine, B., Gupta, P., Gomes, J., Birkett, N., & Krewski, D. (2017). Risk factors associated with the onset and progression of Alzheimer’s disease: A systematic review of the evidence. NeuroToxicology, 61: 143–187. https://doi.org/10.1016/j.neuro.2017.03.006

Hiller, A. J., & Ishii, M. (2018). Disorders of Body Weight, Sleep and Circadian Rhythm as Manifestations of Hypothalamic Dysfunction in Alzheimer’s Disease. Frontiers in Cellular Neuroscience, 12: 471. https://www.frontiersin.org/articles/10.3389/fncel.2018.00471

Chen, G., Xu, T., Yan, Y., Zhou, Y., Jiang, Y., Melcher, K., & Xu, H. E. (2017). Amyloid beta: Structure, biology and structure-based therapeutic development. Acta Pharmacologica Sinica, 38(9): 1205–1235. https://doi.org/10.1038/aps.2017.28

Ju, Y.-E. S., Lucey, B. P., & Holtzman, D. M. (2014). Sleep and Alzheimer disease pathology—A bidirectional relationship. Nature Reviews. Neurology, 10(2): 115–119. https://doi.org/10.1038/nrneurol.2013.269

Gail Canter, R., Huang, W.-C., Choi, H., Wang, J., Ashley Watson, L., Yao, C. G., Abdurrob, F., Bousleiman, S. M., Young, J. Z., Bennett, D. A., Delalle, I., Chung, K., & Tsai, L.-H. (2019). 3D mapping reveals network-specific amyloid progression and subcortical susceptibility in mice. Communications Biology, 2(1): Article 1. https://doi.org/10.1038/s42003-019-0599-8

Oh, J. Y., Walsh, C. M., Ranasinghe, K., Mladinov, M., Pereira, F. L., Petersen, C., Falgàs, N., Yack, L., Lamore, T., Nasar, R., Lew, C., Li, S., Metzler, T., Coppola, Q., Pandher, N., Le, M., Heuer, H. W., Heinsen, H., Spina, S., Seeley, W., Kramer, J., Rabinovici, G., Boxer, A., Miller, B., Vossel, K., Neylan, T., Grinberg, L. T. (2022). Subcortical Neuronal Correlates of Sleep in Neurodegenerative Diseases. JAMA Neurology, 79(5): 498–508. https://doi.org/10.1001/jamaneurol.2022.0429

Vercruysse, P., Vieau, D., Blum, D., Petersén, Å., & Dupuis, L. (2018). Hypothalamic Alterations in Neurodegenerative Diseases and Their Relation to Abnormal Energy Metabolism. Frontiers in Molecular Neuroscience, 11: 2. https://doi.org/10.3389/fnmol.2018.00002

Ishii, M., & Iadecola, C. (2015). Metabolic and Non-Cognitive Manifestations of Alzheimer’s Disease: The Hypothalamus as Both Culprit and Target of Pathology. Cell Metabolism, 22(5): 761–776. https://doi.org/10.1016/j.cmet.2015.08.016

Van Drunen, R., & Eckel-Mahan, K. (2021). Circadian Rhythms of the Hypothalamus: From Function to Physiology. Clocks & Sleep, 3(1): 189–226. https://doi.org/10.3390/clockssleep3010012

Ahmad, F., Sachdeva, P., Sarkar, J., & Izhaar, R. (2023). Circadian dysfunction and Alzheimer’s disease – An updated review. AGING MEDICINE, 6(1): 71–81. https://doi.org/10.1002/agm2.12221

Volicer, L., Harper, D. G., Manning, B. C., Goldstein, R., & Satlin, A. (2001). Sundowning and Circadian Rhythms in Alzheimer’s Disease. American Journal of Psychiatry, 158(5): 704–711. https://doi.org/10.1176/appi.ajp.158.5.704

Gnocchi, D., & Bruscalupi, G. (2017). Circadian Rhythms and Hormonal Homeostasis: Pathophysiological Implications. Biology, 6(1): 10. https://doi.org/10.3390/biology6010010

Homolak, J., Mudrovčić, M., Vukić, B., & Toljan, K. (2018). Circadian Rhythm and Alzheimer’s Disease. Medical Sciences, 6(3): 52. https://doi.org/10.3390/medsci6030052

Cho, C.-H., Yoon, H.-K., Kang, S.-G., Kim, L., Lee, E.-I., & Lee, H.-J. (2018). Impact of Exposure to Dim Light at Night on Sleep in Female and Comparison with Male Subjects. Psychiatry Investigation, 15(5): 520–530. https://doi.org/10.30773/pi.2018.03.17

Ostrin, L.A. (2019), Ocular and systemic melatonin and the influence of light exposure. Clinical and Experimental Optometry, 102: 99-108. https://doi.org/10.1111/cxo.12824

Molina, T. A., & Burgess, H. J. (2011). Calculating the Dim Light Melatonin Onset: The Impact of Threshold and Sampling Rate. Chronobiology International, 28(8): 714–718. https://doi.org/10.3109/07420528.2011.597531

Sleep and Alzheimer: The Link Gaur, A., Kaliappan, A., Balan, Y., Sakthivadivel, V., Medala, K., & Umesh, M. (2022). Sleep and Alzheimer: The Link. Mædica, 17(1): 177–185. https://doi.org/10.26574/maedica.2022.17.1.177

Patel, A. K., Reddy, V., Shumway, K. R., & Araujo, J. F. (2023). Physiology, Sleep Stages. StatPearls Publishing. http://www.ncbi.nlm.nih.gov/books/NBK526132/

Shahid, Z., Asuka, E., & Singh, G. (2023). Physiology, Hypothalamus. StatPearls Publishing. http://www.ncbi.nlm.nih.gov/books/NBK535380/

Dumbell, R., Matveeva, O., & Oster, H. (2016). Circadian Clocks, Stress, and Immunity. Frontiers in Endocrinology, 7: 37. https://www.frontiersin.org/articles/10.3389/fendo.2016.00037

Santhi, N., Lazar, A. S., McCabe, P. J., Lo, J. C., Groeger, J. A., & Dijk, D.-J. (2016). Sex differences in the circadian regulation of sleep and waking cognition in humans. Proceedings of the National Academy of Sciences of the United States of America, 113(19): E2730–E2739. https://doi.org/10.1073/pnas.1521637113

Duffy, J. F., Cain, S. W., Chang, A.-M., Phillips, A. J. K., Münch, M. Y., Gronfier, C., Wyatt, J. K., Dijk, D.-J., Wright, K. P., & Czeisler, C. A. (2011). Sex difference in the near-24-hour intrinsic period of the human circadian timing system. Proceedings of the National Academy of Sciences, 108(supplement_3): 15602–15608. https://doi.org/10.1073/pnas.1010666108

Podcasy, J. L., & Epperson, C. N. (2016). Considering sex and gender in Alzheimer disease and other dementias. Dialogues in clinical neuroscience, 18(4), 437–446. https://doi.org/10.31887/DCNS.2016.18.4/cepperson

Ishii, M., & Iadecola, C. (2015). Metabolic and Non-Cognitive Manifestations of Alzheimer’s Disease: The Hypothalamus as Both Culprit and Target of Pathology. Cell Metabolism, 22(5): 761–776. https://doi.org/10.1016/j.cmet.2015.08.016

Sanchez Jimenez, J. G., & De Jesus, O. (2023). Hypothalamic Dysfunction. StatPearls Publishing. http://www.ncbi.nlm.nih.gov/books/NBK560743/

Published

02-29-2024

How to Cite

Kovalchuk, A., & Eckhardt, J. (2024). Circadian and Sleep-Wake Dysfunctions of the Hypothalamus in Alzheimer’s Disease Progression. Journal of Student Research, 13(1). https://doi.org/10.47611/jsrhs.v13i1.6274

Issue

Section

HS Research Articles