A Deep Semi-Supervised Domain Generalization Approach for Epileptic Seizure Prediction using Electro Encephalo Graphy (EEG)

Authors

  • Sunwoo An The Loomis Chaffee School
  • Koby Osei-Mensah The Loomis Chaffee School

DOI:

https://doi.org/10.47611/jsrhs.v13i1.6269

Keywords:

EEG, Seizure prediction, Machine learning

Abstract

According to the World Health Organization, nearly 50 million people suffer from epilepsy, one of the most common neurological disease. Epilepsy is characterized by abnormal brain activity, leading to recurrent seizures. Each seizure manifests as sudden, uncontrolled bursts of electrical activity in the brain, and the injuries and restrictions on daily life underscores the urgency of finding effective methods for epileptic seizure prediction. With the use of deep learning techniques, early predictions of epileptic seizures, an unsolved problem, are attempted in this paper. Previous research has limitations of being sensitive to noise as it is dependent on specific electroencephalogram (EEG) devices and datasets, a serious issue this paper solves. In this paper, a semi-supervised based domain generalization method to develop an accurate seizure prediction system is proposed. It consists of two phases: representation learning and transfer learning phase. To achieve high precision, the proposed method utilizes a representation learning approach. Here, a feature-swapping mechanism that effectively disentangles seizure-related features is introduced. During transfer learning, the pre-trained network is trained to output the probability of whether the input EEG indicates a seizure or not.  The proposed model achieves state-of-the-art performance, with an accuracy of 90.53% and 94.88% on the NICU and Epileptic Seizure Recognition datasets respectively in within-dataset evaluations. It outperforms the previous methods by 19.35% in cross-dataset evaluations. This robust improvement opens up promising possibilities for real-world clinical applications. The proposed feature disentangling method is also expected to contribute to developing reliable medical tools.

Downloads

Download data is not yet available.

References or Bibliography

Ahmad, I., Wang, X., Zhu, M., Wang, C., Pi, Y., Khan, J., Khan, S., Samuel, O. W., Chen, S., & Li, G. (2022). EEG-Based Epileptic Seizure Detection via Machine/Deep Learning Approaches: A Systematic Review. Computational Intelligence and Neuroscience, 2022, 1–20. https://doi.org/10.1155/2022/6486570

Bailey, D. H., & Swarztrauber, P. N. (1994). A fast method for the numerical evaluation of continuous fourier and laplace transforms. SIAM Journal on Scientific Computing, 15(5), 1105–1110. https://doi.org/10.1137/0915067

CHB-MIT Scalp EEG Database V1.0.0. (2010, June 9). https://physionet.org/content/chbmit/1.0.0/

Downloads. (n.d.). UKB | Epileptologie. https://www.ukbonn.de/epileptologie/arbeitsgruppen/ag-lehnertz-neurophysik/downloads/

EEG Database — Seizure Prediction Project Freiburg. (n.d.). https://epilepsy.uni-freiburg.de/freiburg-seizure-prediction-project/eeg-database

Electroencephalogram (EEG). (2021, August 8). Johns Hopkins Medicine. https://www.hopkinsmedicine.org/health/treatment-tests-and-therapies/electroencephalogram-eeg

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778).

Huang, G. (2016, August 25). Densely connected convolutional networks. arXiv.org. https://arxiv.org/abs/1608.06993

Ikeda, Y., Fusauchi, T., & Samura, T. (2021). Balance between performance and robustness of recurrent neural networks brought by Brain-Inspired constraints on initial structure. In Lecture Notes in Computer Science. https://doi.org/10.1007/978-3-030-92270-2_15

MobileNetV2: Inverted residuals and linear bottlenecks. (2018, June 1). IEEE Conference Publication | IEEE Xplore. https://ieeexplore.ieee.org/document/8578572

&Na, N. (1991). American Electroencephalographic Society Guidelines for Standard Electrode Position Nomenclature. Journal of Clinical Neurophysiology, 8(2), 200–202. https://doi.org/10.1097/00004691-199104000-00007

Rasheed, K. (2020). Machine Learning for Predicting Epileptic Seizures Using EEG Signals: A Review.

San-Segundo, R., Gil-Martín, M., D’Haro, L. F., & Pardo, J. M. (2019). Classification of epileptic EEG recordings using signal transforms and convolutional neural networks. Computers in Biology and Medicine, 109, 148–158. https://doi.org/10.1016/j.compbiomed.2019.04.031

Seizures - Symptoms and causes - Mayo Clinic. (2023, February 4). Mayo Clinic. https://www.mayoclinic.org/diseases-conditions/seizure/symptoms-causes/syc-20365711

Shoeibi, A., Khodatars, M., Ghassemi, N., Jafari, M., Moridian, P., Alizadehsani, R., Panahiazar, M., Khozeimeh, F., Zare, A., Hosseini-Nejad, H., Khosravi, A., Atiya, A. F., Aminshahidi, D., Hussain, S., Rouhani, M., Nahavandi, S., & Acharya, U. R. (2021a). Epileptic Seizures Detection Using Deep Learning Techniques: A review. International Journal of Environmental Research and Public Health, 18(11), 5780. https://doi.org/10.3390/ijerph18115780

Shoeibi, A., Khodatars, M., Ghassemi, N., Jafari, M., Moridian, P., Alizadehsani, R., Panahiazar, M., Khozeimeh, F., Zare, A., Hosseini-Nejad, H., Khosravi, A., Atiya, A. F., Aminshahidi, D., Hussain, S., Rouhani, M., Nahavandi, S., & Acharya, U. R. (2021b). Epileptic Seizures Detection Using Deep Learning Techniques: A review. International Journal of Environmental Research and Public Health, 18(11), 5780. https://doi.org/10.3390/ijerph18115780

Shoeibi, A., Khodatars, M., Ghassemi, N., Jafari, M., Moridian, P., Alizadehsani, R., Panahiazar, M., Khozeimeh, F., Zare, A., Hosseini-Nejad, H., Khosravi, A., Atiya, A. F., Aminshahidi, D., Hussain, S., Rouhani, M., Nahavandi, S., & Acharya, U. R. (2021c). Epileptic Seizures Detection Using Deep Learning Techniques: A review. International Journal of Environmental Research and Public Health, 18(11), 5780. https://doi.org/10.3390/ijerph18115780

Simonyan, K. (2014, September 4). Very deep convolutional networks for Large-Scale image recognition. arXiv.org. https://arxiv.org/abs/1409.1556

Stevenson, N. J., Tapani, K., Lauronen, L., & Vanhatalo, S. (2019). A dataset of neonatal EEG recordings with seizure annotations. Scientific Data, 6(1). https://doi.org/10.1038/sdata.2019.39

Sun, K. (2019, February 25). Deep High-Resolution Representation learning for human pose estimation. arXiv.org. https://arxiv.org/abs/1902.09212

Tatum, W. O. (2008). Handbook of EEG Interpretation. Demos.

Türk, Ö., & Özerdem, M. S. (2019). Epilepsy Detection by Using Scalogram Based Convolutional Neural Network from EEG Signals. Brain Sciences, 9(5), 115. https://doi.org/10.3390/brainsci9050115

UCI Machine Learning Repository. (n.d.). https://archive.ics.uci.edu/dataset/388/epileptic+seizure+recognition

Website, N. (2023, May 17). Electroencephalogram (EEG). nhs.uk. https://www.nhs.uk/conditions/electroencephalogram/

World Health Organization: WHO. (2023). Epilepsy. www.who.int. https://www.who.int/news-room/fact-sheets/detail/epilepsy

Van der Maaten, L., & Hinton, G. (2008). Visualizing data using t-SNE. Journal of machine learning research, 9(11).

Published

02-29-2024

How to Cite

An, S., & Osei-Mensah, K. (2024). A Deep Semi-Supervised Domain Generalization Approach for Epileptic Seizure Prediction using Electro Encephalo Graphy (EEG). Journal of Student Research, 13(1). https://doi.org/10.47611/jsrhs.v13i1.6269

Issue

Section

HS Research Articles