In Silico Screening and Evolution of Promising Novel Anti-Virulents Against Salmonella ATPase
DOI:
https://doi.org/10.47611/jsrhs.v13i1.6252Keywords:
computational chemistry, molecular screening, docking, Salmonella, AutoGrow4Abstract
Current treatments for bacterial infections are under threat by the growth of antibiotic resistance in many different pathogens. Of these pathogens, Salmonella is a particularly widespread microbe, infecting over a million people annually as the leading source of food-borne diseases. One potential solution for antibiotic-resistant Salmonella is virulence inhibition of the bacteria’s T3SS injection system, which has been shown to destroy Salmonella’s proliferative abilities. Here, we identify fourteen compounds, primarily novel ligands, that exhibit high in-vitro potential as Salmonella inhibitors by attacking the ATPase InvC protein vital for T3SS injection–an enzyme that has not been previously evaluated for small-molecule inhibition. We also present a statistical analysis of AutoGrow4, a virtual structure-based molecular design tool that evolves ligands to better suit a target protein using Autodock Vina binding affinity calculations. Together, these create an entirely open-source workflow towards computational identification and evaluation of novel chemical treatments.
Downloads
References or Bibliography
World Health Organization. Antibiotic Resistance. https://www.who.int/news-room/fact-sheets/detail/antibiotic-resistance (2020).
World Health Organization. “Report signals increasing resistance to antibiotics in bacterial infections in humans and need for better data.” https://www.who.int/news/item/09-12-2022-report-signals-increasing-resistance-to-antibiotics-in-bacterial-infections-in-humans-and-need-for-better-data (2022).
D. V. T. Nair., K Venkitanarayanan, A Kollanoor Johny. Antibiotic-resistant salmonella in the food supply and the potential role of antibiotic alternatives for control. Foods, 7, 167. https://doi.org/10.3390/foods7100167 (2018).
Center for Disease Control. The biggest antibiotic-resistant threats in the U.S. https://www.cdc.gov/drugresistance/biggest-threats.html#sal (2019).
MC Duncan, RG Linington, V Auerbuch. Chemical inhibitors of the type three secretion system: disarming bacterial pathogens. Antimicrobials Agents for Chemotherapy, 56, 5433-41. doi: 10.1128/AAC.00975-12 (2012).
HB Case, DS Mattock, BR Miller, NE Dickenson. Novel noncompetitive type three secretion system ATPase inhibitors shut down Shigella effector secretion. Biochemistry, 59, 2667–2678. https://doi.org/10.1021/acs.biochem.0c00431 (2020).
Supratim Dey, Amritangshu Chakravarty, Pallavi Guha Biswas, Roberto N. De Guzman. The type III secretion system needle, tip, and translocon. Protein Science, 28, 1582-1593. Doi: 10.1002/pro.3682 (2019).
W Samuel, G Iwan, M Silke, S Nidhi, ETV Claudia, W Sibel. Bacterial type III secretion systems: a complex device for the delivery of bacterial effector proteins into eukaryotic host cells, FEMS Microbiology Letters, 365, 201. Doi: 10.1093/femsle/fny201 (2018).
Y Wang, M Hou, Z Kan, G Zhang, Y Li, L Zhou, and C Wang. Identification of Novel Type Three Secretion System (T3SS) Inhibitors by Computational Methods and Anti-Salmonella Evaluations. Frontiers in Pharmacology, 12, 764191. doi: 10.3389/fphar.2021.764191 (2021).
B Coburn, I Sekirov, BB Finlay. Type III secretion systems and disease. Clinical Microbiol Review, 20, 535-549. doi:10.1128/CMR.00013-07 (2007).
JA Hotinger, HA Pendergrass, AE May. Molecular Targets and Strategies for Inhibition of the Bacterial Type III Secretion System (T3SS); Inhibitors Directly Binding to T3SS Components. Biomolecules, 2021, 316. doi:10.3390/biom11020316 (2021).
L Lou, P Zhang, R Piao and Y Wang. Salmonella Pathogenicity Island 1 (SPI-1) and Its Complex Regulatory Network. Frontiers in Cellular and Infection Microbiology, 9, 270. doi: 10.3389/fcimb.2019.00270 (2019).
PJ Hume, V Singh, AC Davidson, V Koronakis. Swiss Army Pathogen: The Salmonella Entry Toolkit. Frontiers in Cellular and Infection Microbiology, 7, 348. doi:10.3389/fcimb.2017.00348 (2017).
Y Akeda, J Galán. Genetic Analysis of the Salmonella enterica Type III Secretion-Associated ATPase InvC Defines Discrete Functional Domains. ASM Journal of Bacteriology, 186, 2402 - 2412. https://doi.org/10.1128/jb.186.8.2402-2412.2004 (2004).
Y Akeda, J Galán. Chaperone release and unfolding of substrates in type III secretion. Nature, 437, 911–915. https://doi.org/10.1038/nature03992 (2005).
R Zarivach, M Vuckovic, W Deng, BB Finlay, & NCJ Strynadka. Structural analysis of a prototypical ATPase from the type III secretion system. Nature Structural & Molecular Biology, 14, 131–137. doi:10.1038/nsmb1196 (2007).
W. Swietnicki, D. Carmany, M. Retford, M. Guelta, R. Dorsey, J. Bozue, MS Lee, MA Olson. Identification of Small-Molecule Inhibitors of Yersinia pestis Type III Secretion System YscN ATPase. PLoS One, 6, e19716. doi:10.1371/journal.pone.0019716 (2011).
S. Woestyn, A. Allaoui, P. Wattiau, G.R. Cornelis. YscN, the putative energizer of the Yersinia Yop secretion machinery. ASM Journal of Bacteriology, 176, 1561-1569. Doi: 10.1128/jb.176.6.1561-1569.1994 (1994).
J. A. Klein, J. R. Grenz, J. M. Slauch, L. A. Knodler. Controlled Activity of the Salmonella Invasion-Associated Injectisome Reveals Its Intracellular Role in the Cytosolic Population. ASM mBio, 8. doi: 10.1128/mbio.01931-17 (2017).
DL Hudson, AN Layton, TR Field, AJ Bowen, H Wolf-Watz, M Elofsson, MP Stevens, EE Galyov. Inhibition of type III secretion in Salmonella enterica serovar Typhimurium by small-molecule inhibitors. Antimicrobial Agents and Chemotherapy, 51, 2631-5. doi: 10.1128/AAC.01492-06 (2007).
LN Nesterenko, NA Zigangirova, ES Zayakin, SI Luyksaar, NV Kobets, DV Balunets, LA Shabalina, TN Bolshakova, OY Dobrynina, AL Gintsburg. A small-molecule compound belonging to a class of 2,4-disubstituted 1,3,4-thiadiazine-5-ones suppresses Salmonella infection in vivo. The Journal of Antibiotics, 69, 422-7. doi: 10.1038/ja.2015.131 (2016).
HB Felise, HV Nguyen, RA Pfuetzner, KC Barry, SR Jackson, MP Blanc, PA Bronstein, T Kline, SI Miller. An inhibitor of gram-negative bacterial virulence protein secretion. Cell Host Microbe, 4, 325-36. doi: 10.1016/j.chom.2008.08.001 (2008).
Y Wang, M Hou, Z Kan, G Zhang, Y Li, L Zhou, C Wang. Identification of Novel Type Three Secretion System (T3SS) Inhibitors by Computational Methods and Anti-Salmonella Evaluations. Frontiers in Pharmacology, 12, 764191. doi: 10.3389/fphar.2021.764191 (2021).
R Boonyom, S Roytrakul, P Thinwang. A small molecule, C24H17ClN4O2S, inhibits the function of the type III secretion system in Salmonella Typhimurium. Journal of Genetic Engineering and Biotechnology, 20, 54. doi: 10.1186/s43141-022-00336-1 (2022).
H.M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T.N. Bhat, H. Weissig, I.N. Shindyalov, P.E. Bourne. The Protein Data Bank. Nucleic Acids Research, 28, 235-242 https://doi.org/10.1093/nar/28.1.235 (2000).
EHB Maia, LC Assis, TA Oliveira, AM Silva, AG Taranto. Structure-Based Virtual Screening: From Classical to Artificial Intelligence. Frontiers in Chemistry, 8,343. doi: 10.3389/fchem.2020.00343 (2020).
XY Meng, HX Zhang, M Mezei, M Cui. Molecular docking: a powerful approach for structure-based drug discovery. Current Computer Aided Drug Design, 7,146-57. doi: 10.2174/157340911795677602 (2011).
JJ Irwin, KG Tang, J Young, C Dandarchuluun, BR Wong, M Khurelbaatar, YS Moroz, J Mayfield, RA Sayle. ZINC20—A Free Ultralarge-Scale Chemical Database for Ligand Discovery. Journal of Chemical Information and Modeling, 60, 6065-6073. DOI: 10.1021/acs.jcim.0c00675 (2020).
ZY Yang, JH He, AP Lu, TJ Hou, DS Cao. Application of Negative Design To Design a More Desirable Virtual Screening Library. Journal of Medicinal Chemistry, 63, 4411-4429. DOI: 10.1021/acs.jmedchem.9b01476 (2020).
JO Spiegel, JD Durrant. AutoGrow4: an open-source genetic algorithm for de novo drug design and lead optimization. Journal of Cheminformatics, 12, 25. Doi: 10.1186/s13321-020-00429-4 (2020).
I Bernal, J Roemermann, L Flacht, M Lunelli, C Uetrecht, M Kolbe. Salmonella ATPase InvC with ATP gamma S. doi.org/10.2210/pdb6SDX/pdb (2019).
I Bernal, J Roemermann, L Flacht, M Lunelli, C Uetrecht, M Kolbe. Salmonella ATPase InvC with ATP gamma S. Protein Science, 28, 1888-1901. doi.org/10.2210/pdb6SDX/pdb (2019).
K Eichelberg, CC Ginocchio, JE Galán JE. Molecular and functional characterization of the Salmonella typhimurium invasion genes invB and invC: homology of InvC to the F0F1 ATPase family of proteins. Journal of Bacteriology, 176, 4501-10. doi: 10.1128/jb.176.15.4501-4510.1994 (1994).
JM Ritchie, MK Waldor. The locus of enterocyte effacement-encoded effector proteins all promote enterohemorrhagic Escherichia coli pathogenicity in infant rabbits. ASM Infection and Immunity, 73,1466-74. doi: 10.1128/IAI.73.3.1466-1474.2005 (2005).
JL Burgess, RA Burgess, Y Morales, JM Bouvang, SJ Johnson, NE Dickenson. Structural and Biochemical Characterization of Spa47 Provides Mechanistic Insight into Type III Secretion System ATPase Activation and Shigella Virulence Regulation. Journal of Biological Chemistry, 291, 25837-25852. Doi: 10.1074/jbc.M116.755256 2016 (2016).
E Jurrus, D Engel, K Star, K Monson, J Brandi, LE Felberg, DH Brookes, L Wilson, J Chen , K Liles, M Chun, P Li, DW Gohara, T Dolinsky, R Konecny, DR Koes, JE Nielsen, T Head-Gordon, W Geng, R Krasny, GW Wei, MJ Holst, JA McCammon, NA Baker. Improvements to the APBS biomolecular solvation software suite. Protein Science, 27, 112-128. doi: 10.1002/pro.3280 (2017).
NM O'Boyle, M Banck, CA James, C Morley, T Vandermeersch, GR Hutchison. Open Babel: An open chemical toolbox. Journal of Cheminformatics, 3, 33. DOI:10.1186/1758-2946-3-33 (2011). Version 2.2.0, Accessed 08/2023.
P Ropp, A Friedman, JD Durrant. Scoria: a Python module for manipulating 3D molecular data.Journal of Cheminformatics, 9, 52. doi: 10.1186/s13321-017-0237-8 (2017).
A Alhossary, SD Handoko, Y Mu, CK Kwoh. Fast, Accurate, and Reliable Molecular Docking with QuickVina 2. Bioinformatics, 31, 2214–2216. doi: 10.1093/bioinformatics/btv082 (2015).
AK Ray, PS Sen Gupta, SK Panda, S Biswal, U Bhattacharya, MK Rana. Repurposing of FDA-approved drugs as potential inhibitors of the SARS-CoV-2 main protease: Molecular insights into improved therapeutic discovery. Computers in Biology and Medicine, 142,105183. doi: 10.1016/j.compbiomed.2021.105183 (2022).
Published
How to Cite
Issue
Section
Copyright (c) 2024 Lexi Xu, Norah Shen
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.