The Application of Convolutional Neural Networks in Organ-on-a-Chip Technology: A Review
DOI:
https://doi.org/10.47611/jsrhs.v13i1.6102Keywords:
Organ-on-a-chip, OoC, Convolutional Neural Network, CNN, Review, Applications, device parameters, super-resolution, cell trajectories, image classification, image segmentationAbstract
Recent developments in microfluidics and biomaterials have enabled the creation of organs-on-chips (OoCs), which provide a controlled and lifelike in vitro microenvironment resembling an actual organ. Organ-on-a-chip technology offers a tremendous opportunity for efficient, cost-effective, and ethical drug testing and research. However, the high throughput and large quantities of data these complex microenvironments produce make it difficult for researchers to effectively analyze the data and draw valuable conclusions. Convolutional Neural Networks (CNNs) are most aptly positioned to address many of OoC’s challenges because of their ability to interpret microscopic images and facilitate the analytical process. Despite the growing field of AI, there have been a limited number of studies summarizing the various applications of CNNs in OoCs. This review aims to provide 1) an overview of the technology involved with CNNs and OoCs 2) an insight into the state-of-the-art applications of CNNs in OoCs including device parameters, predicting and tracking cell trajectories, super-resolution image segmentation, and image classification, and 3) an overview of existing challenges and opportunities ahead for clinical translation of this technology. Various applications of CNNs have been classified by the type of task. Different CNN models such as Faster R-CNNs, fully convolutional networks (FCNs), and Mask R-CNNs are explained and highlighted. This review article can be used as a resource for a better understanding of the potential of CNNs in biomedical research and clinical applications, particularly OoCs.
Downloads
References or Bibliography
Y. Bengio, A. Courville and P. Vincent, "Representation Learning: A Review and New Perspectives," in IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 35, no. 8, pp. 1798-1828, Aug. 2013, doi: 10.1109/TPAMI.2013.50.
Budd, S., Robinson, E. C., & Kainz, B. (2021). A survey on active learning and human-in-the-loop deep learning for
medical image analysis. Medical Image Analysis, 71, 102062. https://doi.org/10.1016/j.media.2021.102062
Busek, M., Aizenshtadt, A., Koch, T., Frank, A., Delon, L., Martinez, M. A., Golovin, A., Dumas, C., Stokowiec, J.,
Gruenzner, S., Melum, E., & Krauss, S. (2023). Pump-less, recirculating organ-on-a-chip (rOoC) platform. Lab on a Chip, 23(4), 591–608. https://doi.org/10.1039/D2LC00919F
Carsen Stringer & Marius Pachitariu. (2022). Cellpose 2.0: How to train your own model. BioRxiv,
04.01.486764. https://doi.org/10.1101/2022.04.01.486764
Cascarano, P., Comes, M. C., Mencattini, A., Parrini, M. C., Piccolomini, E. L., & Martinelli, E. (2021). Recursive
Deep Prior Video: A super resolution algorithm for time-lapse microscopy of organ-on-chip experiments. Medical Image Analysis, 72, 102124. https://doi.org/10.1016/j.media.2021.102124
Chen, L., Bentley, P., Mori, K., Misawa, K., Fujiwara, M., & Rueckert, D. (2019). Self-supervised learning for
medical image analysis using image context restoration. Medical Image Analysis, 58, 101539.
https://doi.org/10.1016/j.media.2019.101539
Comes, M. C., Filippi, J., Mencattini, A., Corsi, F., Casti, P., De Ninno, A., Di Giuseppe, D., D’Orazio, M., Ghibelli,
L., Mattei, F., Schiavoni, G., Businaro, L., Di Natale, C., & Martinelli, E. (2020). Accelerating the experimental responses on cell behaviors: A long-term prediction of cell trajectories using Social Generative Adversarial Network. Scientific Reports, 10(1), 15635. https://doi.org/10.1038/s41598-020-72605-3
De Haan, K., Rivenson, Y., Wu, Y., & Ozcan, A. (2020). Deep-Learning-Based Image Reconstruction and
Enhancement in Optical Microscopy. Proceedings of the IEEE, 108(1), 30–50. https://doi.org/10.1109/JPROC.2019.2949575
de Keizer, C. (2019). Phase Contrast Image Preprocessing and Segmentation of Vascular Networks in Human
Organ-on-Chips (Doctoral dissertation, Tilburg University).
Desmond, M., Duesterwald, E., Brimijoin, K., Brachman, M., & Pan, Q. (2021). Semi-Automated Data Labeling.
Proceedings of the NeurIPS 2020 Competition and Demonstration Track, 156–169.
https://proceedings.mlr.press/v133/desmond21a.html
Ehlers, H., Nicolas, A., Schavemaker, F., Heijmans, J. P. M., Bulst, M., Trietsch, S. J., & Van Den Broek, L. J.
(2023). Vascular inflammation on a chip: A scalable platform for trans-endothelial electrical resistance and immune cell migration. Frontiers in Immunology, 14, 1118624. https://doi.org/10.3389/fimmu.2023.1118624
Fetah, K. L., DiPardo, B. J., Kongadzem, E., Tomlinson, J. S., Elzagheid, A., Elmusrati, M., Khademhosseini, A., &
Ashammakhi, N. (2019). Cancer Modeling‐on‐a‐Chip with Future Artificial Intelligence Integration. Small, 15(50), 1901985. https://doi.org/10.1002/smll.201901985
Girshick, R. (2015). Fast r-cnn. In Proceedings of the IEEE international conference on computer vision (pp.
-1448). https://openaccess.thecvf.com/content_iccv_2015/html/Girshick_Fast_R-CNN_ICCV_2015_paper.html
Habib, G., & Qureshi, S. (2022). Optimization and acceleration of convolutional neural networks: A survey. Journal
of King Saud University - Computer and Information Sciences, 34(7), 4244–4268. https://doi.org/10.1016/j.jksuci.2020.10.004
Hannah L. Viola, Vishwa Vasani, Kendra Washington, Ji-Hoon Lee, Cauviya Selva, Andrea Li, Carlos J. Llorente,
Yoshinobu Murayama, James B. Grotberg, Francesco Romanò, & Shuichi Takayama. (2023). Liquid plug propagation in computer-controlled microfluidic airway-on-a-chip with semi-circular microchannels. BioRxiv, 2023.05.24.542177. https://doi.org/10.1101/2023.05.24.542177
He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2017). Mask r-cnn. In Proceedings of the IEEE international
conference on computer vision (pp. 2961-2969). https://openaccess.thecvf.com/content_iccv_2017/html/He_Mask_R-CNN_ICCV_2017_paper.html
He, X., Zhao, K., & Chu, X. (2021). AutoML: A survey of the state-of-the-art. Knowledge-Based Systems, 212,
https://doi.org/10.1016/j.knosys.2020.106622
Jena, B. P., Gatti, D. L., Arslanturk, S., Pernal, S., & Taatjes, D. J. (2019). Human skeletal muscle cell atlas:
Unraveling cellular secrets utilizing ‘muscle-on-a-chip’, differential expansion microscopy, mass spectrometry, nanothermometry and machine learning. Micron, 117, 55–59. https://doi.org/10.1016/j.micron.2018.11.002
Jiao, R., Zhang, Y., Ding, L., Cai, R., & Zhang, J. (2022). Learning with Limited Annotations: A Survey on Deep
Semi-Supervised Learning for Medical Image Segmentation. https://doi.org/10.48550/ARXIV.2207.14191
Kim, T., Lee, K. H., Ham, S., Park, B., Lee, S., Hong, D., Kim, G. B., Kyung, Y. S., Kim, C.-S., & Kim, N. (2020).
Active learning for accuracy enhancement of semantic segmentation with CNN-corrected label curations: Evaluation on kidney segmentation in abdominal CT. Scientific Reports, 10(1), 366. https://doi.org/10.1038/s41598-019-57242-9
Kimmel, J. C., Brack, A. S., & Marshall, W. F. (2021). Deep Convolutional and Recurrent Neural Networks for Cell
Motility Discrimination and Prediction. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 18(2), 562–574. https://doi.org/10.1109/TCBB.2019.2919307
Koyilot, M. C., Natarajan, P., Hunt, C. R., Sivarajkumar, S., Roy, R., Joglekar, S., Pandita, S., Tong, C. W.,
Marakkar, S., Subramanian, L., Yadav, S. S., Cherian, A. V., Pandita, T. K., Shameer, K., & Yadav, K. K. (2022). Breakthroughs and Applications of Organ-on-a-Chip Technology. Cells, 11(11), 1828. https://doi.org/10.3390/cells11111828
Lee, C.-Y., Chang, C.-L., Wang, Y.-N., & Fu, L.-M. (2011). Microfluidic Mixing: A Review. International Journal of
Molecular Sciences, 12(5), 3263–3287. https://doi.org/10.3390/ijms12053263
Leung, C. M., De Haan, P., Ronaldson-Bouchard, K., Kim, G.-A., Ko, J., Rho, H. S., Chen, Z., Habibovic, P., Jeon,
N. L., Takayama, S., Shuler, M. L., Vunjak-Novakovic, G., Frey, O., Verpoorte, E., & Toh, Y.-C. (2022). A guide to the organ-on-a-chip. Nature Reviews Methods Primers, 2(1), 33. https://doi.org/10.1038/s43586-022-00118-6
Li, J., Chen, J., Bai, H., Wang, H., Hao, S., Ding, Y., Peng, B., Zhang, J., Li, L., & Huang, W. (2022). An Overview
of Organs-on-Chips Based on Deep Learning. Research, 2022, 2022/9869518. https://doi.org/10.34133/2022/9869518
Long, J., Shelhamer, E., & Darrell, T. (2015). Fully Convolutional Networks for Semantic Segmentation.
Lore, K. G., Stoecklein, D., Davies, M., Ganapathysubramanian, B., & Sarkar, S. (2015). Hierarchical Feature
Extraction for Efficient Design of Microfluidic Flow Patterns. Proceedings of the 1st International Workshop on Feature Extraction: Modern Questions and Challenges at NIPS 2015, 213–225. https://proceedings.mlr.press/v44/lore15.html
Luo, X., Hu, M., Song, T., Wang, G., & Zhang, S. (2022). Semi-Supervised Medical Image Segmentation via Cross
Teaching between CNN and Transformer. Proceedings of The 5th International Conference on Medical Imaging with Deep Learning, 820–833. https://proceedings.mlr.press/v172/luo22b.html
Mencattini, A., Di Giuseppe, D., Comes, M. C., Casti, P., Corsi, F., Bertani, F. R., Ghibelli, L., Businaro, L., Di
Natale, C., Parrini, M. C., & Martinelli, E. (2020). Discovering the hidden messages within cell trajectories using a deep learning approach for in vitro evaluation of cancer drug treatments. Scientific Reports, 10(1), 7653. https://doi.org/10.1038/s41598-020-64246-3
Mok, J., Na, B., Choe, H., & Yoon, S. (2021). AdvRush: Searching for Adversarially Robust Neural Architectures.
–12332.
Moriya, T., Roth, H. R., Nakamura, S., Oda, H., Nagara, K., Oda, M., & Mori, K. (2018). Unsupervised
segmentation of 3D medical images based on clustering and deep representation learning. In B. Gimi & A. Krol (Eds.), Medical Imaging 2018: Biomedical Applications in Molecular, Structural, and Functional Imaging (p. 71). SPIE. https://doi.org/10.1117/12.2293414
Nishimoto, S., Tokuoka, Y., Yamada, T. G., Hiroi, N. F., & Funahashi, A. (2019). Predicting the future direction of
cell movement with convolutional neural networks. PLOS ONE, 14(9), e0221245. https://doi.org/10.1371/journal.pone.0221245
Osório, L. A., Silva, E., & Mackay, R. E. (2021). A Review of Biomaterials and Scaffold Fabrication for
Organ-on-a-Chip (OOAC) Systems. Bioengineering, 8(8), Article 8. https://doi.org/10.3390/bioengineering8080113
Pattanayak, P., Singh, S. K., Gulati, M., Vishwas, S., Kapoor, B., Chellappan, D. K., Anand, K., Gupta, G., Jha, N.
K., Gupta, P. K., Prasher, P., Dua, K., Dureja, H., Kumar, D., & Kumar, V. (2021). Microfluidic chips: Recent advances, critical strategies in design, applications and future perspectives. Microfluidics and Nanofluidics, 25(12), 99. https://doi.org/10.1007/s10404-021-02502-2
Pérez-Aliacar, M., Doweidar, M. H., Doblaré, M., & Ayensa-Jiménez, J. (2021). Predicting cell behaviour
parameters from glioblastoma on a chip images. A deep learning approach. Computers in Biology and Medicine, 135, 104547. https://doi.org/10.1016/j.compbiomed.2021.104547
Picollet-D’hahan, N., Zuchowska, A., Lemeunier, I., & Gac, S. L. (2021). Multiorgan-on-a-Chip: A Systemic
Approach To Model and Decipher Inter-Organ Communication. Trends in Biotechnology, 39(8), 788–810. https://doi.org/10.1016/j.tibtech.2020.11.014
Polini, A., & Moroni, L. (2021). The convergence of high-tech emerging technologies into the next stage of
organ-on-a-chips. Biomaterials and Biosystems, 1, 100012. https://doi.org/10.1016/j.bbiosy.2021.100012
Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster R-CNN: Towards Real-Time Object Detection with Region
Proposal Networks. Advances in Neural Information Processing Systems, 28. https://proceedings.neurips.cc/paper_files/paper/2015/hash/14bfa6bb14875e45bba028a21ed38046-Abstract.html
Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional Networks for Biomedical Image
Segmentation. In N. Navab, J. Hornegger, W. M. Wells, & A. F. Frangi (Eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015 (Vol. 9351, pp. 234–241). Springer International Publishing. https://doi.org/10.1007/978-3-319-24574-4_28
Sabaté Del Río, J., Ro, J., Yoon, H., Park, T.-E., & Cho, Y.-K. (2023). Integrated technologies for continuous
monitoring of organs-on-chips: Current challenges and potential solutions. Biosensors and Bioelectronics, 224, 115057. https://doi.org/10.1016/j.bios.2022.115057
Salehi, A. W., Khan, S., Gupta, G., Alabduallah, B. I., Almjally, A., Alsolai, H., Siddiqui, T., & Mellit, A. (2023). A
Study of CNN and Transfer Learning in Medical Imaging: Advantages, Challenges, Future Scope. Sustainability, 15(7), 5930. https://doi.org/10.3390/su15075930
Salehinejad, H., Sankar, S., Barfett, J., Colak, E., & Valaee, S. (2018). Recent Advances in Recurrent Neural
Networks (arXiv:1801.01078). arXiv. https://doi.org/10.48550/arXiv.1801.01078
Shorten, C., & Khoshgoftaar, T. M. (2019). A survey on Image Data Augmentation for Deep Learning. Journal of
Big Data, 6(1), 60. https://doi.org/10.1186/s40537-019-0197-0
Siu, D. M. D., Lee, K. C. M., Chung, B. M. F., Wong, J. S. J., Zheng, G., & Tsia, K. K. (2023). Optofluidic imaging
meets deep learning: From merging to emerging. Lab on a Chip, 23(5), 1011–1033. https://doi.org/10.1039/D2LC00813K
Stoecklein, D., Lore, K. G., Davies, M., Sarkar, S., & Ganapathysubramanian, B. (2017). Deep Learning for Flow
Sculpting: Insights into Efficient Learning using Scientific Simulation Data. Scientific Reports, 7(1), 46368. https://doi.org/10.1038/srep46368
Stringer, C., Wang, T., Michaelos, M., & Pachitariu, M. (2021). Cellpose: A generalist algorithm for cellular
segmentation. Nature Methods, 18(1), 100–106. https://doi.org/10.1038/s41592-020-01018-x
Su, S.-H., Song, Y., Stephens, A., Situ, M., McCloskey, M. C., McGrath, J. L., Andjelkovic, A. V., Singer, B. H., &
Kurabayashi, K. (2023). A tissue chip with integrated digital immunosensors: In situ brain endothelial barrier cytokine secretion monitoring. Biosensors and Bioelectronics, 224, 115030. https://doi.org/10.1016/j.bios.2022.115030
Syama, S., & Mohanan, P. V. (2021). Microfluidic based human-on-a-chip: A revolutionary technology in scientific
research. Trends in Food Science & Technology, 110, 711–728. https://doi.org/10.1016/j.tifs.2021.02.049
Ulyanov, D., Vedaldi, A., & Lempitsky, V. (2018). Deep Image Prior. 9446–9454. https://openaccess.thecvf.com/content_cvpr_2018/html/Ulyanov_Deep_Image_Prior_CVPR_2018_paper.html
Wang, J., Zhang, N., Chen, J., Su, G., Yao, H., Ho, T.-Y., & Sun, L. (2021). Predicting the fluid behavior of random
microfluidic mixers using convolutional neural networks. Lab on a Chip, 21(2), 296–309. https://doi.org/10.1039/D0LC01158D
Zhang, Z., Chen, L., Wang, Y., Zhang, T., Chen, Y.-C., & Yoon, E. (2019). Label-Free Estimation of Therapeutic
Efficacy on 3D Cancer Spheres Using Convolutional Neural Network Image Analysis. Analytical Chemistry, 91(21), 14093–14100. https://doi.org/10.1021/acs.analchem.9b03896
Zhao, M., Li, M., Peng, S.-L., & Li, J. (2022). A Novel Deep Learning Model Compression Algorithm. Electronics,
(7), 1066. https://doi.org/10.3390/electronics11071066
Zhu, X. (Jerry). (2005). Semi-Supervised Learning Literature Survey [Technical Report]. University of
Wisconsin-Madison Department of Computer Sciences. https://minds.wisconsin.edu/handle/1793/60444
Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H., Xiong, H., & He, Q. (2021). A Comprehensive Survey on
Transfer Learning. Proceedings of the IEEE, 109(1), 43–76. https://doi.org/10.1109/JPROC.2020.3004555
Published
How to Cite
Issue
Section
Copyright (c) 2024 William Anderson; Morteza Sarmadi
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.