The Application of Convolutional Neural Networks in Organ-on-a-Chip Technology: A Review

Authors

DOI:

https://doi.org/10.47611/jsrhs.v13i1.6102

Keywords:

Organ-on-a-chip, OoC, Convolutional Neural Network, CNN, Review, Applications, device parameters, super-resolution, cell trajectories, image classification, image segmentation

Abstract

Recent developments in microfluidics and biomaterials have enabled the creation of organs-on-chips (OoCs), which provide a controlled and lifelike in vitro microenvironment resembling an actual organ. Organ-on-a-chip technology offers a tremendous opportunity for efficient, cost-effective, and ethical drug testing and research. However, the high throughput and large quantities of data these complex microenvironments produce make it difficult for researchers to effectively analyze the data and draw valuable conclusions. Convolutional Neural Networks (CNNs) are most aptly positioned to address many of OoC’s challenges because of their ability to interpret microscopic images and facilitate the analytical process. Despite the growing field of AI, there have been a limited number of studies summarizing the various applications of CNNs in OoCs. This review aims to provide 1) an overview of the technology involved with CNNs and OoCs 2) an insight into the state-of-the-art applications of CNNs in OoCs including device parameters, predicting and tracking cell trajectories, super-resolution image segmentation, and image classification, and 3) an overview of existing challenges and opportunities ahead for clinical translation of this technology. Various applications of CNNs have been classified by the type of task. Different CNN models such as Faster R-CNNs, fully convolutional networks (FCNs), and Mask R-CNNs are explained and highlighted. This review article can be used as a resource for a better understanding of the potential of CNNs in biomedical research and clinical applications, particularly OoCs. 

Downloads

Download data is not yet available.

Author Biography

Morteza Sarmadi, Massachusetts Institute of Technology

Morteza Sarmadi finished his Ph.D. at MIT in Mechanical Engineering with a focus on polymer-based drug delivery micro/nanosystems. He was advised by Prof. Robert Langer, the most cited engineer in history. Morteza is currently working as a Research Scientist in the Pharmaceutical and Medical Device industries. He has published more than 30 scientific publications in top-ranking journals/conferences such as Nature Biotechnology, Science Translational Medicine, and Science Advances and has 1 licensed US patent.

References or Bibliography

Y. Bengio, A. Courville and P. Vincent, "Representation Learning: A Review and New Perspectives," in IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 35, no. 8, pp. 1798-1828, Aug. 2013, doi: 10.1109/TPAMI.2013.50.

Budd, S., Robinson, E. C., & Kainz, B. (2021). A survey on active learning and human-in-the-loop deep learning for

medical image analysis. Medical Image Analysis, 71, 102062. https://doi.org/10.1016/j.media.2021.102062

Busek, M., Aizenshtadt, A., Koch, T., Frank, A., Delon, L., Martinez, M. A., Golovin, A., Dumas, C., Stokowiec, J.,

Gruenzner, S., Melum, E., & Krauss, S. (2023). Pump-less, recirculating organ-on-a-chip (rOoC) platform. Lab on a Chip, 23(4), 591–608. https://doi.org/10.1039/D2LC00919F

Carsen Stringer & Marius Pachitariu. (2022). Cellpose 2.0: How to train your own model. BioRxiv,

04.01.486764. https://doi.org/10.1101/2022.04.01.486764

Cascarano, P., Comes, M. C., Mencattini, A., Parrini, M. C., Piccolomini, E. L., & Martinelli, E. (2021). Recursive

Deep Prior Video: A super resolution algorithm for time-lapse microscopy of organ-on-chip experiments. Medical Image Analysis, 72, 102124. https://doi.org/10.1016/j.media.2021.102124

Chen, L., Bentley, P., Mori, K., Misawa, K., Fujiwara, M., & Rueckert, D. (2019). Self-supervised learning for

medical image analysis using image context restoration. Medical Image Analysis, 58, 101539.

https://doi.org/10.1016/j.media.2019.101539

Comes, M. C., Filippi, J., Mencattini, A., Corsi, F., Casti, P., De Ninno, A., Di Giuseppe, D., D’Orazio, M., Ghibelli,

L., Mattei, F., Schiavoni, G., Businaro, L., Di Natale, C., & Martinelli, E. (2020). Accelerating the experimental responses on cell behaviors: A long-term prediction of cell trajectories using Social Generative Adversarial Network. Scientific Reports, 10(1), 15635. https://doi.org/10.1038/s41598-020-72605-3

De Haan, K., Rivenson, Y., Wu, Y., & Ozcan, A. (2020). Deep-Learning-Based Image Reconstruction and

Enhancement in Optical Microscopy. Proceedings of the IEEE, 108(1), 30–50. https://doi.org/10.1109/JPROC.2019.2949575

de Keizer, C. (2019). Phase Contrast Image Preprocessing and Segmentation of Vascular Networks in Human

Organ-on-Chips (Doctoral dissertation, Tilburg University).

Desmond, M., Duesterwald, E., Brimijoin, K., Brachman, M., & Pan, Q. (2021). Semi-Automated Data Labeling.

Proceedings of the NeurIPS 2020 Competition and Demonstration Track, 156–169.

https://proceedings.mlr.press/v133/desmond21a.html

Ehlers, H., Nicolas, A., Schavemaker, F., Heijmans, J. P. M., Bulst, M., Trietsch, S. J., & Van Den Broek, L. J.

(2023). Vascular inflammation on a chip: A scalable platform for trans-endothelial electrical resistance and immune cell migration. Frontiers in Immunology, 14, 1118624. https://doi.org/10.3389/fimmu.2023.1118624

Fetah, K. L., DiPardo, B. J., Kongadzem, E., Tomlinson, J. S., Elzagheid, A., Elmusrati, M., Khademhosseini, A., &

Ashammakhi, N. (2019). Cancer Modeling‐on‐a‐Chip with Future Artificial Intelligence Integration. Small, 15(50), 1901985. https://doi.org/10.1002/smll.201901985

Girshick, R. (2015). Fast r-cnn. In Proceedings of the IEEE international conference on computer vision (pp.

-1448). https://openaccess.thecvf.com/content_iccv_2015/html/Girshick_Fast_R-CNN_ICCV_2015_paper.html

Habib, G., & Qureshi, S. (2022). Optimization and acceleration of convolutional neural networks: A survey. Journal

of King Saud University - Computer and Information Sciences, 34(7), 4244–4268. https://doi.org/10.1016/j.jksuci.2020.10.004

Hannah L. Viola, Vishwa Vasani, Kendra Washington, Ji-Hoon Lee, Cauviya Selva, Andrea Li, Carlos J. Llorente,

Yoshinobu Murayama, James B. Grotberg, Francesco Romanò, & Shuichi Takayama. (2023). Liquid plug propagation in computer-controlled microfluidic airway-on-a-chip with semi-circular microchannels. BioRxiv, 2023.05.24.542177. https://doi.org/10.1101/2023.05.24.542177

He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2017). Mask r-cnn. In Proceedings of the IEEE international

conference on computer vision (pp. 2961-2969). https://openaccess.thecvf.com/content_iccv_2017/html/He_Mask_R-CNN_ICCV_2017_paper.html

He, X., Zhao, K., & Chu, X. (2021). AutoML: A survey of the state-of-the-art. Knowledge-Based Systems, 212,

https://doi.org/10.1016/j.knosys.2020.106622

Jena, B. P., Gatti, D. L., Arslanturk, S., Pernal, S., & Taatjes, D. J. (2019). Human skeletal muscle cell atlas:

Unraveling cellular secrets utilizing ‘muscle-on-a-chip’, differential expansion microscopy, mass spectrometry, nanothermometry and machine learning. Micron, 117, 55–59. https://doi.org/10.1016/j.micron.2018.11.002

Jiao, R., Zhang, Y., Ding, L., Cai, R., & Zhang, J. (2022). Learning with Limited Annotations: A Survey on Deep

Semi-Supervised Learning for Medical Image Segmentation. https://doi.org/10.48550/ARXIV.2207.14191

Kim, T., Lee, K. H., Ham, S., Park, B., Lee, S., Hong, D., Kim, G. B., Kyung, Y. S., Kim, C.-S., & Kim, N. (2020).

Active learning for accuracy enhancement of semantic segmentation with CNN-corrected label curations: Evaluation on kidney segmentation in abdominal CT. Scientific Reports, 10(1), 366. https://doi.org/10.1038/s41598-019-57242-9

Kimmel, J. C., Brack, A. S., & Marshall, W. F. (2021). Deep Convolutional and Recurrent Neural Networks for Cell

Motility Discrimination and Prediction. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 18(2), 562–574. https://doi.org/10.1109/TCBB.2019.2919307

Koyilot, M. C., Natarajan, P., Hunt, C. R., Sivarajkumar, S., Roy, R., Joglekar, S., Pandita, S., Tong, C. W.,

Marakkar, S., Subramanian, L., Yadav, S. S., Cherian, A. V., Pandita, T. K., Shameer, K., & Yadav, K. K. (2022). Breakthroughs and Applications of Organ-on-a-Chip Technology. Cells, 11(11), 1828. https://doi.org/10.3390/cells11111828

Lee, C.-Y., Chang, C.-L., Wang, Y.-N., & Fu, L.-M. (2011). Microfluidic Mixing: A Review. International Journal of

Molecular Sciences, 12(5), 3263–3287. https://doi.org/10.3390/ijms12053263

Leung, C. M., De Haan, P., Ronaldson-Bouchard, K., Kim, G.-A., Ko, J., Rho, H. S., Chen, Z., Habibovic, P., Jeon,

N. L., Takayama, S., Shuler, M. L., Vunjak-Novakovic, G., Frey, O., Verpoorte, E., & Toh, Y.-C. (2022). A guide to the organ-on-a-chip. Nature Reviews Methods Primers, 2(1), 33. https://doi.org/10.1038/s43586-022-00118-6

Li, J., Chen, J., Bai, H., Wang, H., Hao, S., Ding, Y., Peng, B., Zhang, J., Li, L., & Huang, W. (2022). An Overview

of Organs-on-Chips Based on Deep Learning. Research, 2022, 2022/9869518. https://doi.org/10.34133/2022/9869518

Long, J., Shelhamer, E., & Darrell, T. (2015). Fully Convolutional Networks for Semantic Segmentation.

–3440. https://openaccess.thecvf.com/content_cvpr_2015/html/Long_Fully_Convolutional_Networks_2015_CVPR_paper.html

Lore, K. G., Stoecklein, D., Davies, M., Ganapathysubramanian, B., & Sarkar, S. (2015). Hierarchical Feature

Extraction for Efficient Design of Microfluidic Flow Patterns. Proceedings of the 1st International Workshop on Feature Extraction: Modern Questions and Challenges at NIPS 2015, 213–225. https://proceedings.mlr.press/v44/lore15.html

Luo, X., Hu, M., Song, T., Wang, G., & Zhang, S. (2022). Semi-Supervised Medical Image Segmentation via Cross

Teaching between CNN and Transformer. Proceedings of The 5th International Conference on Medical Imaging with Deep Learning, 820–833. https://proceedings.mlr.press/v172/luo22b.html

Mencattini, A., Di Giuseppe, D., Comes, M. C., Casti, P., Corsi, F., Bertani, F. R., Ghibelli, L., Businaro, L., Di

Natale, C., Parrini, M. C., & Martinelli, E. (2020). Discovering the hidden messages within cell trajectories using a deep learning approach for in vitro evaluation of cancer drug treatments. Scientific Reports, 10(1), 7653. https://doi.org/10.1038/s41598-020-64246-3

Mok, J., Na, B., Choe, H., & Yoon, S. (2021). AdvRush: Searching for Adversarially Robust Neural Architectures.

–12332.

https://openaccess.thecvf.com/content/ICCV2021/html/Mok_AdvRush_Searching_for_Adversarially_Robust_Neural_Architectures_ICCV_2021_paper.html

Moriya, T., Roth, H. R., Nakamura, S., Oda, H., Nagara, K., Oda, M., & Mori, K. (2018). Unsupervised

segmentation of 3D medical images based on clustering and deep representation learning. In B. Gimi & A. Krol (Eds.), Medical Imaging 2018: Biomedical Applications in Molecular, Structural, and Functional Imaging (p. 71). SPIE. https://doi.org/10.1117/12.2293414

Nishimoto, S., Tokuoka, Y., Yamada, T. G., Hiroi, N. F., & Funahashi, A. (2019). Predicting the future direction of

cell movement with convolutional neural networks. PLOS ONE, 14(9), e0221245. https://doi.org/10.1371/journal.pone.0221245

Osório, L. A., Silva, E., & Mackay, R. E. (2021). A Review of Biomaterials and Scaffold Fabrication for

Organ-on-a-Chip (OOAC) Systems. Bioengineering, 8(8), Article 8. https://doi.org/10.3390/bioengineering8080113

Pattanayak, P., Singh, S. K., Gulati, M., Vishwas, S., Kapoor, B., Chellappan, D. K., Anand, K., Gupta, G., Jha, N.

K., Gupta, P. K., Prasher, P., Dua, K., Dureja, H., Kumar, D., & Kumar, V. (2021). Microfluidic chips: Recent advances, critical strategies in design, applications and future perspectives. Microfluidics and Nanofluidics, 25(12), 99. https://doi.org/10.1007/s10404-021-02502-2

Pérez-Aliacar, M., Doweidar, M. H., Doblaré, M., & Ayensa-Jiménez, J. (2021). Predicting cell behaviour

parameters from glioblastoma on a chip images. A deep learning approach. Computers in Biology and Medicine, 135, 104547. https://doi.org/10.1016/j.compbiomed.2021.104547

Picollet-D’hahan, N., Zuchowska, A., Lemeunier, I., & Gac, S. L. (2021). Multiorgan-on-a-Chip: A Systemic

Approach To Model and Decipher Inter-Organ Communication. Trends in Biotechnology, 39(8), 788–810. https://doi.org/10.1016/j.tibtech.2020.11.014

Polini, A., & Moroni, L. (2021). The convergence of high-tech emerging technologies into the next stage of

organ-on-a-chips. Biomaterials and Biosystems, 1, 100012. https://doi.org/10.1016/j.bbiosy.2021.100012

Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster R-CNN: Towards Real-Time Object Detection with Region

Proposal Networks. Advances in Neural Information Processing Systems, 28. https://proceedings.neurips.cc/paper_files/paper/2015/hash/14bfa6bb14875e45bba028a21ed38046-Abstract.html

Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional Networks for Biomedical Image

Segmentation. In N. Navab, J. Hornegger, W. M. Wells, & A. F. Frangi (Eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015 (Vol. 9351, pp. 234–241). Springer International Publishing. https://doi.org/10.1007/978-3-319-24574-4_28

Sabaté Del Río, J., Ro, J., Yoon, H., Park, T.-E., & Cho, Y.-K. (2023). Integrated technologies for continuous

monitoring of organs-on-chips: Current challenges and potential solutions. Biosensors and Bioelectronics, 224, 115057. https://doi.org/10.1016/j.bios.2022.115057

Salehi, A. W., Khan, S., Gupta, G., Alabduallah, B. I., Almjally, A., Alsolai, H., Siddiqui, T., & Mellit, A. (2023). A

Study of CNN and Transfer Learning in Medical Imaging: Advantages, Challenges, Future Scope. Sustainability, 15(7), 5930. https://doi.org/10.3390/su15075930

Salehinejad, H., Sankar, S., Barfett, J., Colak, E., & Valaee, S. (2018). Recent Advances in Recurrent Neural

Networks (arXiv:1801.01078). arXiv. https://doi.org/10.48550/arXiv.1801.01078

Shorten, C., & Khoshgoftaar, T. M. (2019). A survey on Image Data Augmentation for Deep Learning. Journal of

Big Data, 6(1), 60. https://doi.org/10.1186/s40537-019-0197-0

Siu, D. M. D., Lee, K. C. M., Chung, B. M. F., Wong, J. S. J., Zheng, G., & Tsia, K. K. (2023). Optofluidic imaging

meets deep learning: From merging to emerging. Lab on a Chip, 23(5), 1011–1033. https://doi.org/10.1039/D2LC00813K

Stoecklein, D., Lore, K. G., Davies, M., Sarkar, S., & Ganapathysubramanian, B. (2017). Deep Learning for Flow

Sculpting: Insights into Efficient Learning using Scientific Simulation Data. Scientific Reports, 7(1), 46368. https://doi.org/10.1038/srep46368

Stringer, C., Wang, T., Michaelos, M., & Pachitariu, M. (2021). Cellpose: A generalist algorithm for cellular

segmentation. Nature Methods, 18(1), 100–106. https://doi.org/10.1038/s41592-020-01018-x

Su, S.-H., Song, Y., Stephens, A., Situ, M., McCloskey, M. C., McGrath, J. L., Andjelkovic, A. V., Singer, B. H., &

Kurabayashi, K. (2023). A tissue chip with integrated digital immunosensors: In situ brain endothelial barrier cytokine secretion monitoring. Biosensors and Bioelectronics, 224, 115030. https://doi.org/10.1016/j.bios.2022.115030

Syama, S., & Mohanan, P. V. (2021). Microfluidic based human-on-a-chip: A revolutionary technology in scientific

research. Trends in Food Science & Technology, 110, 711–728. https://doi.org/10.1016/j.tifs.2021.02.049

Ulyanov, D., Vedaldi, A., & Lempitsky, V. (2018). Deep Image Prior. 9446–9454. https://openaccess.thecvf.com/content_cvpr_2018/html/Ulyanov_Deep_Image_Prior_CVPR_2018_paper.html

Wang, J., Zhang, N., Chen, J., Su, G., Yao, H., Ho, T.-Y., & Sun, L. (2021). Predicting the fluid behavior of random

microfluidic mixers using convolutional neural networks. Lab on a Chip, 21(2), 296–309. https://doi.org/10.1039/D0LC01158D

Zhang, Z., Chen, L., Wang, Y., Zhang, T., Chen, Y.-C., & Yoon, E. (2019). Label-Free Estimation of Therapeutic

Efficacy on 3D Cancer Spheres Using Convolutional Neural Network Image Analysis. Analytical Chemistry, 91(21), 14093–14100. https://doi.org/10.1021/acs.analchem.9b03896

Zhao, M., Li, M., Peng, S.-L., & Li, J. (2022). A Novel Deep Learning Model Compression Algorithm. Electronics,

(7), 1066. https://doi.org/10.3390/electronics11071066

Zhu, X. (Jerry). (2005). Semi-Supervised Learning Literature Survey [Technical Report]. University of

Wisconsin-Madison Department of Computer Sciences. https://minds.wisconsin.edu/handle/1793/60444

Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H., Xiong, H., & He, Q. (2021). A Comprehensive Survey on

Transfer Learning. Proceedings of the IEEE, 109(1), 43–76. https://doi.org/10.1109/JPROC.2020.3004555

Published

02-29-2024

How to Cite

Anderson, W., & Sarmadi, M. (2024). The Application of Convolutional Neural Networks in Organ-on-a-Chip Technology: A Review. Journal of Student Research, 13(1). https://doi.org/10.47611/jsrhs.v13i1.6102

Issue

Section

HS Review Articles