Convolutional Neural Network Model for Diabetic Retinopathy Feature Extraction and Classification

Authors

DOI:

https://doi.org/10.47611/jsrhs.v13i1.6093

Keywords:

Diabetic Retinopathy, Artificial Intelligence, Disease Detection, Convolutional Neural Networks, Image Classification, Fundus Images

Abstract

The application of Artificial Intelligence in the medical market brings up increasing concerns but aids in more timely diagnosis of silent progressing diseases like Diabetic Retinopathy. In order to diagnose Diabetic Retinopathy (DR), ophthalmologists use color fundus images, or pictures of the back of the retina, to identify small distinct features through a difficult and time-consuming process. Our work creates a novel  CNN model and identifies the severity of DR through fundus image input. We classified four known DR features, including micro-aneurysms, cotton wools, exudates, and hemorrhages, through convolutional layers and were able to provide an accurate diagnostic without additional user input. The proposed model is more interpretable and robust to overfitting. We present initial results with a sensitivity of 97% and an accuracy of 71%.  Our contribution is an interpretable model with similar accuracy to more complex models.  With that, our model advances the field of DR detection and proves to be a key step towards AI-focused medical diagnosis.

Downloads

Download data is not yet available.

Author Biography

Leilani H. Gilpin, UC Santa Cruz

I am an Assistant Professor in Computer Science and Engineering and an affiliate of the Science & Justic Research Center at UC Santa Cruz. I am part of the AI group @ UCSC and I lead the AI Explainability and Accountability (AIEA) Lab.

References or Bibliography

Albahli, S., & Nabi Ahmad Hassan Yar, G. (2022). Detection of Diabetic Retinopathy Using Custom CNN to Segment the Lesions. Intelligent Automation & Soft Computing, 33(2), 837–853. https://doi.org/10.32604/iasc.2022.024427

Alzubaidi, L., Zhang, J., Humaidi, A. J., Al-Dujaili, A., Duan, Y., Al-Shamma, O., Santamaría, J., Fadhel, M. A., Al-Amidie, M., & Farhan, L. (2021). Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. Journal of Big Data, 8(1). https://doi.org/10.1186/s40537-021-00444-8

Chalutz Ben-Gal, H. (2023). Artificial intelligence (AI) acceptance in primary care during the coronavirus pandemic: What is the role of patients’ gender, age and health awareness? A two-phase pilot study. Frontiers in Public Health, 10. https://doi.org/10.3389/fpubh.2022.931225

Indolia, Sakshi & Goswami, Anil & Mishra, S.P. & Asopa, Pooja. (2018). Conceptual Understanding of Convolutional Neural Network- A Deep Learning Approach. Procedia Computer Science. 132. 679-688. https://doi.org10.1016/j.procs.2018.05.069

Matuszewski, D. J., Hast, A., Wählby, C., & Ida-Maria Sintorn. (2017). A short feature vector for image matching: The Log-Polar Magnitude feature descriptor. PLOS ONE, 12(11), e0188496–e0188496. https://doi.org/10.1371/journal.pone.0188496

Mesfin Asfaw Taye, Morrow, D., Cull, J., D. Hudson Smith, & Hagan, M. T. (2022). Deep Learning for FAST Quality Assessment. Journal of Ultrasound in Medicine, 42(1), 71–79. https://doi.org/10.1002/jum.16045

Mutawa, A. M., Alnajdi, S., & Sruthi, S. (2023). Transfer Learning for Diabetic Retinopathy Detection: A study of dataset combination and model performance. Applied Sciences, 13(9), 5685. https://doi.org/10.3390/app13095685

Pao, Shu-I., Lin, H.-Z., Chien, K.-H., Tai, M.-C., Chen, J.-T., & Lin, G.-M. (2020). Detection of Diabetic Retinopathy Using Bichannel Convolutional Neural Network. Journal of Ophthalmology, 2020, e9139713. https://doi.org/10.1155/2020/9139713

Peng, J., Pedersoli, M., & Desrosiers, C. (2021). Boosting Semi-supervised Image Segmentation with Global and Local Mutual Information Regularization. Machine Learning for Biomedical Imaging, 1(MIDL 2020 special issue), 1–29. https://doi.org/10.59275/j.melba.2021-g79f

Pratt, H., Coenen, F., Broadbent, D. M., Harding, S. P., & Zheng, Y. (2016). Convolutional Neural Networks for Diabetic Retinopathy. Procedia Computer Science, 90, 200–205. https://doi.org/10.1016/j.procs.2016.07.014

R., Y., Raja Sarobin M., V., Panjanathan, R., S., G. J., & L., J. A. (2022). Diabetic Retinopathy Classification Using CNN and Hybrid Deep Convolutional Neural Networks. Symmetry, 14(9), 1932. https://doi.org/10.3390/sym14091932

Robertson, C. T., Woods, A., Bergstrand, K., Findley, J., Balser, C., & Slepian, M. J. (2023). Diverse patients’ attitudes towards Artificial Intelligence (AI) in diagnosis. PLOS Digital Health, 2(5), e0000237–e0000237. https://doi.org/10.1371/journal.pdig.0000237

Sarki, R., Ahmed, K., Wang, H., Zhang, Y., Ma, J., & Wang, K. (2021). Image Preprocessing in Classification and Identification of Diabetic Eye Diseases. Data Science and Engineering, 6(4), 455–471. https://doi.org/10.1007/s41019-021-00167-z

Shin, H.-C., Roth, H. R., Gao, M., Lu, L., Xu, Z., Nogues, I., Yao, J., Mollura, D., & Summers, R. M. (2016). Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning. IEEE Transactions on Medical Imaging, 35(5), 1285–1298. https://doi.org/10.1109/tmi.2016.2528162

Sophie Isabelle Lambert, Madi, M., Sasa Sopka, Lenes, A., Stange, H., Claus-Peter Buszello, & Stephan, A. (2023). An integrative review on the acceptance of artificial intelligence among healthcare professionals in hospitals. Npj Digit. Med, 6(1). https://doi.org/10.1038/s41746-023-00852-5

Wolfensberger, T. J., & Hamilton, A. M. P. (2001). Diabetic retinopathy – An historical review. Seminars in Ophthalmology, 16(1), 2–7. https://doi.org/10.1076/soph.16.1.2.4220

Yala, A., Lehman, C., Schuster, T., Portnoi, T., & Barzilay, R. (2019). A deep learning mammography-based model for improved breast cancer risk prediction. Radiology, 292(1), 60–66. https://doi.org/10.1148/radiol.2019182716

Yamashita, R., Nishio, M., Do, R. K. G., & Togashi, K. (2018). Convolutional neural networks: an overview and application in radiology. Insights into Imaging, 9(4), 611–629. https://doi.org/10.1007/s13244-018-0639-9

Published

02-29-2024

How to Cite

Subramanian, S., & Gilpin, L. (2024). Convolutional Neural Network Model for Diabetic Retinopathy Feature Extraction and Classification. Journal of Student Research, 13(1). https://doi.org/10.47611/jsrhs.v13i1.6093

Issue

Section

HS Research Projects