Convolutional Neural Network Model for Diabetic Retinopathy Feature Extraction and Classification
DOI:
https://doi.org/10.47611/jsrhs.v13i1.6093Keywords:
Diabetic Retinopathy, Artificial Intelligence, Disease Detection, Convolutional Neural Networks, Image Classification, Fundus ImagesAbstract
The application of Artificial Intelligence in the medical market brings up increasing concerns but aids in more timely diagnosis of silent progressing diseases like Diabetic Retinopathy. In order to diagnose Diabetic Retinopathy (DR), ophthalmologists use color fundus images, or pictures of the back of the retina, to identify small distinct features through a difficult and time-consuming process. Our work creates a novel CNN model and identifies the severity of DR through fundus image input. We classified four known DR features, including micro-aneurysms, cotton wools, exudates, and hemorrhages, through convolutional layers and were able to provide an accurate diagnostic without additional user input. The proposed model is more interpretable and robust to overfitting. We present initial results with a sensitivity of 97% and an accuracy of 71%. Our contribution is an interpretable model with similar accuracy to more complex models. With that, our model advances the field of DR detection and proves to be a key step towards AI-focused medical diagnosis.
Downloads
References or Bibliography
Albahli, S., & Nabi Ahmad Hassan Yar, G. (2022). Detection of Diabetic Retinopathy Using Custom CNN to Segment the Lesions. Intelligent Automation & Soft Computing, 33(2), 837–853. https://doi.org/10.32604/iasc.2022.024427
Alzubaidi, L., Zhang, J., Humaidi, A. J., Al-Dujaili, A., Duan, Y., Al-Shamma, O., Santamaría, J., Fadhel, M. A., Al-Amidie, M., & Farhan, L. (2021). Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. Journal of Big Data, 8(1). https://doi.org/10.1186/s40537-021-00444-8
Chalutz Ben-Gal, H. (2023). Artificial intelligence (AI) acceptance in primary care during the coronavirus pandemic: What is the role of patients’ gender, age and health awareness? A two-phase pilot study. Frontiers in Public Health, 10. https://doi.org/10.3389/fpubh.2022.931225
Indolia, Sakshi & Goswami, Anil & Mishra, S.P. & Asopa, Pooja. (2018). Conceptual Understanding of Convolutional Neural Network- A Deep Learning Approach. Procedia Computer Science. 132. 679-688. https://doi.org10.1016/j.procs.2018.05.069
Matuszewski, D. J., Hast, A., Wählby, C., & Ida-Maria Sintorn. (2017). A short feature vector for image matching: The Log-Polar Magnitude feature descriptor. PLOS ONE, 12(11), e0188496–e0188496. https://doi.org/10.1371/journal.pone.0188496
Mesfin Asfaw Taye, Morrow, D., Cull, J., D. Hudson Smith, & Hagan, M. T. (2022). Deep Learning for FAST Quality Assessment. Journal of Ultrasound in Medicine, 42(1), 71–79. https://doi.org/10.1002/jum.16045
Mutawa, A. M., Alnajdi, S., & Sruthi, S. (2023). Transfer Learning for Diabetic Retinopathy Detection: A study of dataset combination and model performance. Applied Sciences, 13(9), 5685. https://doi.org/10.3390/app13095685
Pao, Shu-I., Lin, H.-Z., Chien, K.-H., Tai, M.-C., Chen, J.-T., & Lin, G.-M. (2020). Detection of Diabetic Retinopathy Using Bichannel Convolutional Neural Network. Journal of Ophthalmology, 2020, e9139713. https://doi.org/10.1155/2020/9139713
Peng, J., Pedersoli, M., & Desrosiers, C. (2021). Boosting Semi-supervised Image Segmentation with Global and Local Mutual Information Regularization. Machine Learning for Biomedical Imaging, 1(MIDL 2020 special issue), 1–29. https://doi.org/10.59275/j.melba.2021-g79f
Pratt, H., Coenen, F., Broadbent, D. M., Harding, S. P., & Zheng, Y. (2016). Convolutional Neural Networks for Diabetic Retinopathy. Procedia Computer Science, 90, 200–205. https://doi.org/10.1016/j.procs.2016.07.014
R., Y., Raja Sarobin M., V., Panjanathan, R., S., G. J., & L., J. A. (2022). Diabetic Retinopathy Classification Using CNN and Hybrid Deep Convolutional Neural Networks. Symmetry, 14(9), 1932. https://doi.org/10.3390/sym14091932
Robertson, C. T., Woods, A., Bergstrand, K., Findley, J., Balser, C., & Slepian, M. J. (2023). Diverse patients’ attitudes towards Artificial Intelligence (AI) in diagnosis. PLOS Digital Health, 2(5), e0000237–e0000237. https://doi.org/10.1371/journal.pdig.0000237
Sarki, R., Ahmed, K., Wang, H., Zhang, Y., Ma, J., & Wang, K. (2021). Image Preprocessing in Classification and Identification of Diabetic Eye Diseases. Data Science and Engineering, 6(4), 455–471. https://doi.org/10.1007/s41019-021-00167-z
Shin, H.-C., Roth, H. R., Gao, M., Lu, L., Xu, Z., Nogues, I., Yao, J., Mollura, D., & Summers, R. M. (2016). Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning. IEEE Transactions on Medical Imaging, 35(5), 1285–1298. https://doi.org/10.1109/tmi.2016.2528162
Sophie Isabelle Lambert, Madi, M., Sasa Sopka, Lenes, A., Stange, H., Claus-Peter Buszello, & Stephan, A. (2023). An integrative review on the acceptance of artificial intelligence among healthcare professionals in hospitals. Npj Digit. Med, 6(1). https://doi.org/10.1038/s41746-023-00852-5
Wolfensberger, T. J., & Hamilton, A. M. P. (2001). Diabetic retinopathy – An historical review. Seminars in Ophthalmology, 16(1), 2–7. https://doi.org/10.1076/soph.16.1.2.4220
Yala, A., Lehman, C., Schuster, T., Portnoi, T., & Barzilay, R. (2019). A deep learning mammography-based model for improved breast cancer risk prediction. Radiology, 292(1), 60–66. https://doi.org/10.1148/radiol.2019182716
Yamashita, R., Nishio, M., Do, R. K. G., & Togashi, K. (2018). Convolutional neural networks: an overview and application in radiology. Insights into Imaging, 9(4), 611–629. https://doi.org/10.1007/s13244-018-0639-9
Published
How to Cite
Issue
Section
Copyright (c) 2024 Sharan Subramanian; Leilani H. Gilpin
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.