Exploring Mechanisms and Promising Treatments of Malignant Melanoma
DOI:
https://doi.org/10.47611/jsrhs.v13i1.6064Keywords:
malignant melanoma, epigenetics, oncogenes, mutations, T-cell therapy, mRNA vaccine, treatmentsAbstract
Malignant melanoma is one of the 4 main types of skin cancer, among basal cell carcinoma, squamous cell carcinoma, and Merkel cell carcinoma, and it is the most aggressive and metastatic form. Unfortunately, advanced-stage, metastatic patients have a 5-year survival rate of a mere 5% to 19%.
The traditional first-line treatment option for localized cutaneous melanomas is a tumor and margin excision surgery; however, in advanced-stage patients, chemotherapy drugs and targeted therapies have emerged as a more effective treatment option. The rising incidence of malignant melanoma in the fair-skinned populations of North America, Europe, and Australia, along with rising resistance to immune checkpoint inhibitors (ICIs), underscores the importance of new, efficacious melanoma treatments. The novel and breakthrough development of two types of immunotherapies, T-cell receptor (TCR) engineered T-cell immunotherapy (TCR-T) and mRNA vaccines, are promising treatment options, especially for advanced-stage, metastatic patients. While these treatments are in the early stages of development, various clinical trials have resulted in positive outcomes. Lastly, this review will highlight the challenges and setbacks to immunotherapy and future directions. Immunotherapy may become the standard for melanoma treatment, however, by overcoming current barriers, only time will tell.
Downloads
References or Bibliography
Alqathama, A. (2020). BRAF in malignant melanoma progression and metastasis: Potentials and challenges. American Journal of Cancer Research, 10(4), 1103–1114. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7191094/
American Cancer Society (2019, August 14). What causes melanoma skin cancer?. https://www.cancer.org/cancer/types/melanoma-skin-cancer/causes-risks-prevention/what-causes.html
American Cancer Society. (2023, January 12). Key statistics for melanoma skin cancer. https://www.cancer.org/cancer/types/melanoma-skin-cancer/about/key-statistics.html
Ascierto, P. A., Kirkwood, J. M., Grob, J. J., Simeone, E., Grimaldi, A. M., Maio, M., Palmieri, G., Testori, A., Marincola, F. M., & Mozzillo, N. (2012). The role of BRAF V600 mutation in melanoma. Journal of Translational Medicine, 10, 85. https://doi.org/10.1186/1479-5876-10-85
Bafaloukos, D., Gazouli, I., Koutserimpas, C., & Samonis, G. (2023). Evolution and progress of mRNA vaccines in the treatment of melanoma: Future prospects. Vaccines, 11(3), 636. https://doi.org/10.3390/vaccines11030636
Besaratinia, A., & Tommasi, S. (2014). Epigenetics of human melanoma: Promises and challenges. Journal Molecular Cell Biology, 6(5), 356–367. https://doi.org/10.1093/jmcb/mju027
Cancer.Net. (2023, February). Melanoma Diagnosis. https://www.cancer.net/cancer-types/melanoma/diagnosis
Cirenajwis, H., Lauss, M., Ekedahl, H., Törngren, T., Kvist, A., Saal, L. H., Olsson, H., Staaf, J., Carneiro, A., Ingvar, C., Harbst, K., Hayward, N. K., & Jönsson, G. (2017). NF1-mutated melanoma tumors harbor distinct clinical and biological characteristics. Molecular Oncology, 11(4), 438–451. https://doi.org/10.1002/1878-0261.12050
Conroy, R. (2023, February 23). FDA grants breakthrough designation to mRNA vaccine for resected melanoma. Cancer Network. https://www.cancernetwork.com/view/fda-grants-breakthrough-designation-to-mrna-vaccine-for-resected-melanoma
Echevarría-Vargas, I. M., & Villanueva, J. (2017). Combating NRAS mutant melanoma: From bench to bedside. Melanoma Management, 4(4), 183–186. https://doi.org/10.2217/mmt-2017-0023
Fath K. M., Azargoonjahromi, A., Soofi, A., Almasi, F., Hosseinzadeh, S., Khalili, S., Sheikhi, K., Ferdousmakan, S., Owrangi, S., Fahimi, M., Zalpoor, H., Afjadi, M. N., Payandeh, Z., & Pourzardosht, N. (2022). Current understanding of epigenetics role in melanoma treatment and resistance. Cancer Cell International, 22(313). https://doi.org/10.1186/s12935-022-02738-0
Fitzpatrick T. B. (1988). The validity and practicality of sun-reactive skin types I through VI. Archives of Dermatology, 124(6), 869–871. https://doi.org/10.1001/archderm.124.6.869
Halpern, A. C., Marghoob, A. A., Reiter, O. (2022, January). Melanoma overview: A dangerous skin cancer. Skin Cancer Foundation. https://www.skincancer.org/skin-cancer-information/melanoma/#look
Hunder, N. N., Wallen, H., Cao, J., Hendricks, D. W., Reilly, J. Z., Rodmyre, R., Jungbluth, A., Gnjatic, S., Thompson, J. A., & Yee, C. (2008). Treatment of metastatic melanoma with autologous CD4+ T cells against NY-ESO-1. The New England Journal of Medicine, 358(25), 2698–2703. https://doi.org/10.1056/NEJMoa0800251
Institute for Quality and Efficiency in Health Care (IGWiG). (2018). What increases your risk of melanoma?. InformedHealth.org. https://www.ncbi.nlm.nih.gov/books/NBK321118/
Jazirehi, A. R. (2021). Molecular analysis of elements of melanoma insensitivity to TCR-engineered adoptive cell therapy. International Journal of Molecular Sciences, 22(21), 11726. https://doi.org/10.3390/ijms222111726
Juan, C. A., Pérez de la Lastra, J. M., Plou, F. J., & Pérez-Lebeña, E. (2021). The chemistry of reactive oxygen species (ROS) revisited: Outlining their role in biological macromolecules (DNA, lipids and proteins) and induced pathologies. International Journal of Molecular Sciences, 22(9), 4642. https://doi.org/10.3390/ijms22094642
Karachaliou, N., Pilotto, S., Teixidó, C., Viteri, S., González-Cao, M., Riso, A., Morales-Espinosa, D., Molina, M. A., Chaib, I., Santarpia, M., Richardet, E., Bria, E., & Rosell, R. (2015). Melanoma: Oncogenic drivers and the immune system. Annals of Translational Medicine, 3(18), 265. https://doi.org/10.3978/j.issn.2305-5839.2015.08.06
Kiuru, M., & Busam, K. J. (2017). The NF1 gene in tumor syndromes and melanoma. Laboratory Investigation; A Journal of Technical Methods and Pathology, 97(2), 146–157. https://doi.org/10.1038/labinvest.2016.142
Lee, J., Murphy, G. & Lian, C. (2014). Melanoma epigenetics: Novel mechanisms, markers, and medicines. Lab Invest, 94, 822–838. https://doi.org/10.1038/labinvest.2014.87
Liu, Q., Cai, W., Zhang, W., & Li, Y. (2020). Cancer immunotherapy using T-cell receptor engineered T-cell. Annals of Blood, 5. doi:10.21037/aob.2020.02.02
Morgan, R. A., Dudley, M. E., Wunderlich, J. R., Hughes, M. S., Yang, J. C., Sherry, R. M., Royal, R. E., Topalian, S. L., Kammula, U. S., Restifo, N. P., Zheng, Z., Nahvi, A., de Vries, C. R., Rogers-Freezer, L. J., Mavroukakis, S. A., & Rosenberg, S. A. (2006). Cancer regression in patients after transfer of genetically engineered lymphocytes. Science, 314(5796), 126–129. https://doi.org/10.1126/science.1129003
Muñoz-Couselo, E., Adelantado, E. Z., Ortiz, C., García, J. S., & Perez-Garcia, J. (2017). NRAS-mutant melanoma: Current challenges and future prospect. OncoTargets and Therapy, 10, 3941–3947. https://doi.org/10.2147/OTT.S117121
National Cancer Institute (2023). Cancer stat facts: Melanoma of the skin. https://seer.cancer.gov/statfacts/html/melan.html
Paluncic, J., Kovacevic, Z., Jansson, P. J., Kalinowski, D., Merlot, A. M., Huang, M. L.-H., Lok, H. C., Sahni, S., Lane, D. J. R., & Richardson, D. R. (2016). Roads to melanoma: Key pathways and emerging players in melanoma progression and oncogenic signaling. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1863(4), 770–784. https://doi.org/10.1016/j.bbamcr.2016.01.025
Raaijmakers, M. I. G., Widmer, D. S., Narechania, A., Eichhoff, O., Freiberger, S. N., Wenzina, J., Cheng, P. F., Mihic-Probst, D., Desalle, R., Dummer, R., & Levesque, M. P. (2016). Co-existence of BRAF and NRAS driver mutations in the same melanoma cells results in heterogeneity of targeted therapy resistance. Oncotarget, 7(47), 77163–77174. https://doi.org/10.18632/oncotarget.12848
Rebecca, V. W., Sondak, V. K., & Smalley, K. S. (2012). A brief history of melanoma: From mummies to mutations. Melanoma Research, 22(2), 114–122. https://doi.org/10.1097/CMR.0b013e328351fa4d
Robert, G., & Wagner, J. R. (2020). ROS-induced DNA damage as an underlying cause of aging. Advances in Geriatric Medicine and Research, 2(4), e200024. https://doi.org/10.20900/agmr20200024
Rowe, L. A., Degtyareva, N., & Doetsch, P. W. (2008). DNA damage-induced reactive oxygen species (ROS) stress response in Saccharomyces cerevisiae. Free Radical Biology & Medicine, 45(8), 1167–1177. https://doi.org/10.1016/j.freeradbiomed.2008.07.018
Sandru, A., Voinea, S., Panaitescu, E., & Blidaru, A. (2014). Survival rates of patients with metastatic malignant melanoma. Journal of Medicine and Life, 7(4), 572–576. Retrieved September 12, 2023 from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4316142/
Santourlidis, S., Schulz, W. A., Araúzo-Bravo, M. J., Gerovska, D., Ott, P., Bendhack, M. L., Hassan, M., & Erichsen, L. (2022). Epigenetics in the diagnosis and therapy of malignant melanoma. International Journal of Molecular Sciences, 23(3), 1531. https://doi.org/10.3390/ijms23031531
Srinivas, U. S., Tan, B. W. Q., Vellayappan, B. A., & Jeyasekharan, A. D. (2019). ROS and the DNA damage response in cancer. Redox Regulation of Cell State and Fate, 25, 101084. https://doi.org/10.1016/j.redox.2018.101084
Villanueva, J., & Herlyn, M. (2008). Melanoma and the tumor microenvironment. Current Oncology Reports, 10(5), 439–446. https://doi.org/10.1007/s11912-008-0067-y
Weber, J. S. (2023, April 16). Adding new vaccine type to leading immunotherapy dramatically reduced melanoma recurrence. NYU Langone Health. https://nyulangone.org/news/adding-new-vaccine-type-leading-immunotherapy-dramatically-reduced-melanoma-recurrence
Winge-Main, A. K., Wälchli, S., & Inderberg, E. M. (2020) T cell receptor therapy against melanoma - Immunotherapy for the future?. Scandinavian Journal of Immunology, 92(4). https://doi.org/10.1111/sji.12927
World Health Organization. (2017, October 16). Radiation: Ultraviolet (UV) radiation and skin cancer. https://www.who.int/news-room/questions-and-answers/item/radiation-ultraviolet-(uv)-radiation-and-skin-cancer
Zhou, S., Lu, J., Liu, S., Shao, J., Liu, Z., Li, J., & Xiao, W. (2023). Role of the tumor microenvironment in malignant melanoma organoids during the development and metastasis of tumors. Frontiers in Cell and Developmental Biology, 11. https://doi.org/10.3389/fcell.2023.1166916
Published
How to Cite
Issue
Section
Copyright (c) 2024 Iris Pan; Sanchita Bhatnagar, Dan Wang
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.