Exploring Mechanisms and Promising Treatments of Malignant Melanoma

Authors

  • Iris Pan Bridgewater-Raritan High School
  • Sanchita Bhatnagar University of California, Davis
  • Dan Wang

DOI:

https://doi.org/10.47611/jsrhs.v13i1.6064

Keywords:

malignant melanoma, epigenetics, oncogenes, mutations, T-cell therapy, mRNA vaccine, treatments

Abstract

Malignant melanoma is one of the 4 main types of skin cancer, among basal cell carcinoma, squamous cell carcinoma, and Merkel cell carcinoma, and it is the most aggressive and metastatic form. Unfortunately, advanced-stage, metastatic patients have a 5-year survival rate of a mere 5% to 19%. 

The traditional first-line treatment option for localized cutaneous melanomas is a tumor and margin excision surgery; however, in advanced-stage patients, chemotherapy drugs and targeted therapies have emerged as a more effective treatment option. The rising incidence of malignant melanoma in the fair-skinned populations of North America, Europe, and Australia, along with rising resistance to immune checkpoint inhibitors (ICIs), underscores the importance of new, efficacious melanoma treatments. The novel and breakthrough development of two types of immunotherapies, T-cell receptor (TCR) engineered T-cell immunotherapy (TCR-T) and mRNA vaccines, are promising treatment options, especially for advanced-stage, metastatic patients. While these treatments are in the early stages of development, various clinical trials have resulted in positive outcomes. Lastly, this review will highlight the challenges and setbacks to immunotherapy and future directions. Immunotherapy may become the standard for melanoma treatment, however, by overcoming current barriers, only time will tell.

Downloads

Download data is not yet available.

References or Bibliography

Alqathama, A. (2020). BRAF in malignant melanoma progression and metastasis: Potentials and challenges. American Journal of Cancer Research, 10(4), 1103–1114. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7191094/

American Cancer Society (2019, August 14). What causes melanoma skin cancer?. https://www.cancer.org/cancer/types/melanoma-skin-cancer/causes-risks-prevention/what-causes.html

American Cancer Society. (2023, January 12). Key statistics for melanoma skin cancer. https://www.cancer.org/cancer/types/melanoma-skin-cancer/about/key-statistics.html

Ascierto, P. A., Kirkwood, J. M., Grob, J. J., Simeone, E., Grimaldi, A. M., Maio, M., Palmieri, G., Testori, A., Marincola, F. M., & Mozzillo, N. (2012). The role of BRAF V600 mutation in melanoma. Journal of Translational Medicine, 10, 85. https://doi.org/10.1186/1479-5876-10-85

Bafaloukos, D., Gazouli, I., Koutserimpas, C., & Samonis, G. (2023). Evolution and progress of mRNA vaccines in the treatment of melanoma: Future prospects. Vaccines, 11(3), 636. https://doi.org/10.3390/vaccines11030636

Besaratinia, A., & Tommasi, S. (2014). Epigenetics of human melanoma: Promises and challenges. Journal Molecular Cell Biology, 6(5), 356–367. https://doi.org/10.1093/jmcb/mju027

Cancer.Net. (2023, February). Melanoma Diagnosis. https://www.cancer.net/cancer-types/melanoma/diagnosis

Cirenajwis, H., Lauss, M., Ekedahl, H., Törngren, T., Kvist, A., Saal, L. H., Olsson, H., Staaf, J., Carneiro, A., Ingvar, C., Harbst, K., Hayward, N. K., & Jönsson, G. (2017). NF1-mutated melanoma tumors harbor distinct clinical and biological characteristics. Molecular Oncology, 11(4), 438–451. https://doi.org/10.1002/1878-0261.12050

Conroy, R. (2023, February 23). FDA grants breakthrough designation to mRNA vaccine for resected melanoma. Cancer Network. https://www.cancernetwork.com/view/fda-grants-breakthrough-designation-to-mrna-vaccine-for-resected-melanoma

Echevarría-Vargas, I. M., & Villanueva, J. (2017). Combating NRAS mutant melanoma: From bench to bedside. Melanoma Management, 4(4), 183–186. https://doi.org/10.2217/mmt-2017-0023

Fath K. M., Azargoonjahromi, A., Soofi, A., Almasi, F., Hosseinzadeh, S., Khalili, S., Sheikhi, K., Ferdousmakan, S., Owrangi, S., Fahimi, M., Zalpoor, H., Afjadi, M. N., Payandeh, Z., & Pourzardosht, N. (2022). Current understanding of epigenetics role in melanoma treatment and resistance. Cancer Cell International, 22(313). https://doi.org/10.1186/s12935-022-02738-0

Fitzpatrick T. B. (1988). The validity and practicality of sun-reactive skin types I through VI. Archives of Dermatology, 124(6), 869–871. https://doi.org/10.1001/archderm.124.6.869

Halpern, A. C., Marghoob, A. A., Reiter, O. (2022, January). Melanoma overview: A dangerous skin cancer. Skin Cancer Foundation. https://www.skincancer.org/skin-cancer-information/melanoma/#look

Hunder, N. N., Wallen, H., Cao, J., Hendricks, D. W., Reilly, J. Z., Rodmyre, R., Jungbluth, A., Gnjatic, S., Thompson, J. A., & Yee, C. (2008). Treatment of metastatic melanoma with autologous CD4+ T cells against NY-ESO-1. The New England Journal of Medicine, 358(25), 2698–2703. https://doi.org/10.1056/NEJMoa0800251

Institute for Quality and Efficiency in Health Care (IGWiG). (2018). What increases your risk of melanoma?. InformedHealth.org. https://www.ncbi.nlm.nih.gov/books/NBK321118/

Jazirehi, A. R. (2021). Molecular analysis of elements of melanoma insensitivity to TCR-engineered adoptive cell therapy. International Journal of Molecular Sciences, 22(21), 11726. https://doi.org/10.3390/ijms222111726

Juan, C. A., Pérez de la Lastra, J. M., Plou, F. J., & Pérez-Lebeña, E. (2021). The chemistry of reactive oxygen species (ROS) revisited: Outlining their role in biological macromolecules (DNA, lipids and proteins) and induced pathologies. International Journal of Molecular Sciences, 22(9), 4642. https://doi.org/10.3390/ijms22094642

Karachaliou, N., Pilotto, S., Teixidó, C., Viteri, S., González-Cao, M., Riso, A., Morales-Espinosa, D., Molina, M. A., Chaib, I., Santarpia, M., Richardet, E., Bria, E., & Rosell, R. (2015). Melanoma: Oncogenic drivers and the immune system. Annals of Translational Medicine, 3(18), 265. https://doi.org/10.3978/j.issn.2305-5839.2015.08.06

Kiuru, M., & Busam, K. J. (2017). The NF1 gene in tumor syndromes and melanoma. Laboratory Investigation; A Journal of Technical Methods and Pathology, 97(2), 146–157. https://doi.org/10.1038/labinvest.2016.142

Lee, J., Murphy, G. & Lian, C. (2014). Melanoma epigenetics: Novel mechanisms, markers, and medicines. Lab Invest, 94, 822–838. https://doi.org/10.1038/labinvest.2014.87

Liu, Q., Cai, W., Zhang, W., & Li, Y. (2020). Cancer immunotherapy using T-cell receptor engineered T-cell. Annals of Blood, 5. doi:10.21037/aob.2020.02.02

Morgan, R. A., Dudley, M. E., Wunderlich, J. R., Hughes, M. S., Yang, J. C., Sherry, R. M., Royal, R. E., Topalian, S. L., Kammula, U. S., Restifo, N. P., Zheng, Z., Nahvi, A., de Vries, C. R., Rogers-Freezer, L. J., Mavroukakis, S. A., & Rosenberg, S. A. (2006). Cancer regression in patients after transfer of genetically engineered lymphocytes. Science, 314(5796), 126–129. https://doi.org/10.1126/science.1129003

Muñoz-Couselo, E., Adelantado, E. Z., Ortiz, C., García, J. S., & Perez-Garcia, J. (2017). NRAS-mutant melanoma: Current challenges and future prospect. OncoTargets and Therapy, 10, 3941–3947. https://doi.org/10.2147/OTT.S117121

National Cancer Institute (2023). Cancer stat facts: Melanoma of the skin. https://seer.cancer.gov/statfacts/html/melan.html

Paluncic, J., Kovacevic, Z., Jansson, P. J., Kalinowski, D., Merlot, A. M., Huang, M. L.-H., Lok, H. C., Sahni, S., Lane, D. J. R., & Richardson, D. R. (2016). Roads to melanoma: Key pathways and emerging players in melanoma progression and oncogenic signaling. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1863(4), 770–784. https://doi.org/10.1016/j.bbamcr.2016.01.025

Raaijmakers, M. I. G., Widmer, D. S., Narechania, A., Eichhoff, O., Freiberger, S. N., Wenzina, J., Cheng, P. F., Mihic-Probst, D., Desalle, R., Dummer, R., & Levesque, M. P. (2016). Co-existence of BRAF and NRAS driver mutations in the same melanoma cells results in heterogeneity of targeted therapy resistance. Oncotarget, 7(47), 77163–77174. https://doi.org/10.18632/oncotarget.12848

Rebecca, V. W., Sondak, V. K., & Smalley, K. S. (2012). A brief history of melanoma: From mummies to mutations. Melanoma Research, 22(2), 114–122. https://doi.org/10.1097/CMR.0b013e328351fa4d

Robert, G., & Wagner, J. R. (2020). ROS-induced DNA damage as an underlying cause of aging. Advances in Geriatric Medicine and Research, 2(4), e200024. https://doi.org/10.20900/agmr20200024

Rowe, L. A., Degtyareva, N., & Doetsch, P. W. (2008). DNA damage-induced reactive oxygen species (ROS) stress response in Saccharomyces cerevisiae. Free Radical Biology & Medicine, 45(8), 1167–1177. https://doi.org/10.1016/j.freeradbiomed.2008.07.018

Sandru, A., Voinea, S., Panaitescu, E., & Blidaru, A. (2014). Survival rates of patients with metastatic malignant melanoma. Journal of Medicine and Life, 7(4), 572–576. Retrieved September 12, 2023 from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4316142/

Santourlidis, S., Schulz, W. A., Araúzo-Bravo, M. J., Gerovska, D., Ott, P., Bendhack, M. L., Hassan, M., & Erichsen, L. (2022). Epigenetics in the diagnosis and therapy of malignant melanoma. International Journal of Molecular Sciences, 23(3), 1531. https://doi.org/10.3390/ijms23031531

Srinivas, U. S., Tan, B. W. Q., Vellayappan, B. A., & Jeyasekharan, A. D. (2019). ROS and the DNA damage response in cancer. Redox Regulation of Cell State and Fate, 25, 101084. https://doi.org/10.1016/j.redox.2018.101084

Villanueva, J., & Herlyn, M. (2008). Melanoma and the tumor microenvironment. Current Oncology Reports, 10(5), 439–446. https://doi.org/10.1007/s11912-008-0067-y

Weber, J. S. (2023, April 16). Adding new vaccine type to leading immunotherapy dramatically reduced melanoma recurrence. NYU Langone Health. https://nyulangone.org/news/adding-new-vaccine-type-leading-immunotherapy-dramatically-reduced-melanoma-recurrence

Winge-Main, A. K., Wälchli, S., & Inderberg, E. M. (2020) T cell receptor therapy against melanoma - Immunotherapy for the future?. Scandinavian Journal of Immunology, 92(4). https://doi.org/10.1111/sji.12927

World Health Organization. (2017, October 16). Radiation: Ultraviolet (UV) radiation and skin cancer. https://www.who.int/news-room/questions-and-answers/item/radiation-ultraviolet-(uv)-radiation-and-skin-cancer

Zhou, S., Lu, J., Liu, S., Shao, J., Liu, Z., Li, J., & Xiao, W. (2023). Role of the tumor microenvironment in malignant melanoma organoids during the development and metastasis of tumors. Frontiers in Cell and Developmental Biology, 11. https://doi.org/10.3389/fcell.2023.1166916

Published

02-29-2024

How to Cite

Pan, I., Bhatnagar, S., & Wang, D. (2024). Exploring Mechanisms and Promising Treatments of Malignant Melanoma. Journal of Student Research, 13(1). https://doi.org/10.47611/jsrhs.v13i1.6064

Issue

Section

HS Review Articles