Biophysical Mechanisms of Microfluidic Devices: Future in Diagnostics and Microcellular Analyses

Authors

  • Matthew Platzman East Brunswick High School
  • Maisha Rahman, PhD

DOI:

https://doi.org/10.47611/jsrhs.v13i1.6036

Keywords:

Microfluidic Devices, Research Technologies, Cancer, Microbiology

Abstract

Microfluidic dеvicеs (MFDs) havе rеvolutionizеd fluid manipulation and analysis at thе microscalе. They sustain prеcisе control ovеr fluid flow through intricatе nеtworks of microchannеls that allow for the integration of multiplе laboratory practicеs onto a singlе chip, transforming sciеntific rеsеarch and practical applications in biology, chеmistry, and mеdical diagnostics. MFDs havе fundamеntal charactеristics that contributе to thеir functionality and vеrsatility, such as matеrials likе Polydimеthylsiloxanе (PDMS), providing composition flеxibility, cost-effectiveness, and biocompatibility. In MFDs, fluid motion rеgulation involvеs еmploying various flows, microvalvеs, and capillary forcеs, stimulating fluid transport without external еnеrgy. Thе narrow width of the microchannels is advantageous in biomedical applications, as it assures efficient fluid separation and reduced sample volumеs. This tеchnology has еxhibitеd practicality in protеin charactеrization, DNA analysis, cеll sеparation, and hormonal signal rеcognition, еnabling sеnsitivе dеtеction and quantification of biomolеculеs. This provides researchers with valuablе insight into complеx biological procеssеs and disease mechanisms. MFDs play a crucial rolе in simulating complеx biological procеssеs on a small scalе, leading to the emergence of organ-on-a-chip and lab-on-a-chip tеchnologiеs. MFDs hold rеmarkablе promisе in rеvolutionizing cancеr diagnostics, sеrving as еffеctivе platforms for isolating and analyzing cancеr-spеcific biomarkеrs, facilitating еarly dеtеction, pеrsonalizing mеdicinе, and monitoring tumor dynamics in real time. MFDs allow for thе evaluation of therapeutic efficacy and investigation into cancеr metastasis, еnhancing intraopеrativе pathological еvaluation. By lеvеraging thеir uniquе charactеristics, MFDs havе thе potеntial to drivе significant advancеmеnts in cancеr diagnostics and improvе our insight into complеx biological procеssеs, leading to enhanced and personalized therapeutics.

Downloads

Download data is not yet available.

References or Bibliography

Convery, N., & Gadegaard, N. (2019). 30 years of microfluidics. Micro and Nano Engineering, 2, 76–91. https://doi.org/10.1016/j.mne.2019.01.003

‌National Cancer Institute. (2020, September 25). Cancer Statistics. National Cancer Institute; Cancer.gov. https://www.cancer.gov/about-cancer/understanding/statistics

Nielsen, J. B., Hanson, R. L., Almughamsi, H. M., Pang, C., Fish, T. R., & Woolley, A. T. (2019). Microfluidics: Innovations in Materials and Their Fabrication and Functionalization. Analytical Chemistry, 92(1), 150–168. https://doi.org/10.1021/acs.analchem.9b04986

‌Wang, S., Yu, S., Lu, M., & Zuo, L. (2017). Microfabrication of plastic-PDMS microfluidic devices using polyimide release layer and selective adhesive bonding. Journal of Micromechanics and Microengineering, 27(5), 055015. https://doi.org/10.1088/1361-6439/aa66ed

Mukherjee, P., Nebuloni, F., Gao, H., Zhou, J., & Papautsky, I. (2019). Rapid Prototyping of Soft Lithography Masters for Microfluidic Devices Using Dry Film Photoresist in a Non-Cleanroom Setting. Micromachines, 10(3), 192. https://doi.org/10.3390/mi10030192

Stanley, C. E., Wootton, R. C. R., & DeMello, A. J. (2012). Continuous and Segmented Flow Microfluidics: Applications in High-throughput Chemistry and Biology. CHIMIA, 66(3), 88. https://doi.org/10.2533/chimia.2012.88

‌Zagnoni, M., & Cooper, J. (2011). Droplet Microfluidics for High-throughput Analysis of Cells and Particles. 23–48. https://doi.org/10.1016/b978-0-12-374912-3.00002-x

‌Zhang, C., Xing, D., & Li, Y. (2007). Micropumps, microvalves, and micromixers within PCR microfluidic chips: Advances and trends. Biotechnology Advances, 25(5), 483–514. https://doi.org/10.1016/j.biotechadv.2007.05.003

‌Hassan, S., Tariq, A., Noreen, Z., Donia, A., Zaidi, S. Z. J., Bokhari, H., & Zhang, X. (2020). Capillary-Driven Flow Microfluidics Combined with Smartphone Detection: An Emerging Tool for Point-of-Care Diagnostics. Diagnostics, 10(8), 509. https://doi.org/10.3390/diagnostics10080509

‌Sajeesh, P., Doble, M., & Sen, A. K. (2014). Hydrodynamic resistance and mobility of deformable objects in microfluidic channels. Biomicrofluidics, 8(5), 054112. https://doi.org/10.1063/1.4897332

‌Jakiela, S., Makulska, S., Korczyk, P. M., & Garstecki, P. (2011). Speed of flow of individual droplets in microfluidic channels as a function of the capillary number, volume of droplets and contrast of viscosities. Lab on a Chip, 11(21), 3603–3608. https://doi.org/10.1039/C1LC20534J

‌Stan, C. A., Tang, S. K. Y., & Whitesides, G. M. (2009). Independent Control of Drop Size and Velocity in Microfluidic Flow-Focusing Generators Using Variable Temperature and Flow Rate. Analytical Chemistry, 81(6), 2399–2402. https://doi.org/10.1021/ac8026542

‌Holmes, D. (2015). Confined Fluid Flow: Microfluidics and Capillarity. https://www.bu.edu/moss/files/2015/08/Sapienza2015_Microfluidics.pdf

‌Schulte, T. H., Bardell, R. L., & Weigl, B. H. (2002). Microfluidic technologies in clinical diagnostics. Clinica Chimica Acta, 321(1-2), 1–10. https://doi.org/10.1016/s0009-8981(02)00093-1

‌Liu, L. L., Wang, L., Zonderman, J., Rouse, J. C., & Kim, H.-Y. (2020). Automated, High-Throughput Infrared Spectroscopy for Secondary Structure Analysis of Protein Biopharmaceuticals. Journal of Pharmaceutical Sciences, 109(10), 3223–3230. https://doi.org/10.1016/j.xphs.2020.07.030

‌Ivancic, V. A., Lombardo, H. L., Ma, E., Wikström, M., & Batabyal, D. (2022). Advancing secondary structure characterization of monoclonal antibodies using Microfluidic Modulation Spectroscopy. Analytical Biochemistry, 646, 114629. https://doi.org/10.1016/j.ab.2022.114629

‌Bruijns, B., van Asten, A., Tiggelaar, R., & Gardeniers, H. (2016). Microfluidic Devices for Forensic DNA Analysis: A Review. Biosensors, 6(3), 41. https://doi.org/10.3390/bios6030041

‌Njoroge, S. K., Chen, H.-W., Witek, M. A., & Soper, S. A. (2011). Integrated microfluidic systems for DNA analysis. Topics in Current Chemistry, 304, 203–260. https://doi.org/10.1007/128_2011_153

‌Nasiri, R., Shamloo, A., Ahadian, S., Amirifar, L., Akbari, J., Goudie, M. J., Lee, K., Ashammakhi, N., Dokmeci, M. R., Di Carlo, D., & Khademhosseini, A. (2020). Microfluidic‐Based Approaches in Targeted Cell/Particle Separation Based on Physical Properties: Fundamentals and Applications. Small, 16(29), 2000171. https://doi.org/10.1002/smll.202000171

‌Li, W., & Peng, Y.-F. (2023). Advances in microfluidic chips based on islet hormone-sensing techniques. World Journal of Diabetes, 14(1), 17–25. https://doi.org/10.4239/wjd.v14.i1.17

Ahi, E. E., Torul, H., Zengin, A., Sucularlı, F., Yıldırım, E., Selbes, Y., Suludere, Z., & Tamer, U. (2022). A capillary driven microfluidic chip for SERS based hCG detection. Biosensors & Bioelectronics, 195, 113660. https://doi.org/10.1016/j.bios.2021.113660

‌Levine, E., & Lee, K. S. (2020). Microfluidic approaches for Caenorhabditis elegans research. Animal Cells and Systems, 24(6), 311–320. https://doi.org/10.1080/19768354.2020.1837951

‌Aboobaker, A. A., & Blaxter, M. L. (2000). Medical significance ofCaenorhabditis elegans. Annals of Medicine, 32(1), 23–30. https://doi.org/10.3109/07853890008995906

‌Kaletta, T., & Hengartner, M. O. (2006). Finding function in novel targets: C. elegans as a model organism. Nature Reviews Drug Discovery, 5(5), 387–399. https://doi.org/10.1038/nrd2031

‌Youssef, K., Tandon, A., & Rezai, P. (2019). Studying Parkinson’s disease using Caenorhabditis elegans models in microfluidic devices. Integrative Biology, 11(5), 186–207. https://doi.org/10.1093/intbio/zyz017

‌Tong, J., Rezai, P., Salam, S., Selvaganapathy, P. R., & Gupta, B. P. (2013). Microfluidic-based Electrotaxis for On-demand Quantitative Analysis of Caenorhabditis elegans’ Locomotion. Journal of Visualized Experiments, 75. https://doi.org/10.3791/50226

‌Zhao, X., Li, M., & Liu, Y. (2019). Microfluidic-Based Approaches for Foodborne Pathogen Detection. Microorganisms, 7(10), 381. https://doi.org/10.3390/microorganisms7100381

‌Nocera, G. M., Viscido, G., Criscuolo, S., Brillante, S., Carbone, F., Staiano, L., Carrella, S., & di Bernardo, D. (2022). The VersaLive platform enables microfluidic mammalian cell culture for versatile applications. Communications Biology, 5(1), 1–9. https://doi.org/10.1038/s42003-022-03976-8

‌Human Organs-on-Chips. (2014, July 28). Wyss Institute. https://wyss.harvard.edu/technology/human-organs-on-chips/#:~:text=Donald%20Ingber%2C%20M.D.%2C%20Ph

Franke, T. A., & Wixforth, A. (2008). Microfluidics for Miniaturized Laboratories on a Chip. ChemPhysChem, 9(15), 2140–2156. https://doi.org/10.1002/cphc.200800349

‌Nikanjam, M., Kato, S., & Kurzrock, R. (2022). Liquid biopsy: current technology and clinical applications. Journal of Hematology & Oncology, 15(1). https://doi.org/10.1186/s13045-022-01351-y

‌Khamenehfar, A., & C.H. Li, P. (2016). Microfluidic Devices for Circulating Tumor Cells Isolation and Subsequent Analysis. Current Pharmaceutical Biotechnology, 17(9), 810–821. https://doi.org/10.2174/1389201017666160301103509

‌Xu, Z., Qiao, Y., & Tu, J. (2019). Microfluidic Technologies for cfDNA Isolation and Analysis. Micromachines, 10(10), 672. https://doi.org/10.3390/mi10100672

‌Heidrich, I., Ačkar, L., Mossahebi Mohammadi, P., & Pantel, K. (2020). Liquid biopsies: Potential and challenges. International Journal of Cancer, 148(3), 528–545. https://doi.org/10.1002/ijc.33217

‌Noor, J., Chaudhry, A., & Saima Batool. (2023). Microfluidic Technology, Artificial Intelligence, and Biosensors As Advanced Technologies in Cancer Screening: A Review Article. https://doi.org/10.7759/cureus.39634

‌Pérez‐Rodríguez, S., García‐Aznar, J. M., & Gonzalo‐Asensio, J. (2021). Microfluidic devices for studying bacterial taxis, drug testing and biofilm formation. Microbial Biotechnology, 15(2), 395–414. https://doi.org/10.1111/1751-7915.13775

‌Zhang, X., Karim, M., Hasan, M. M., Hooper, J., Wahab, R., Roy, S., & Al-Hilal, T. A. (2022). Cancer-on-a-Chip: Models for Studying Metastasis. Cancers, 14(3), 648. https://doi.org/10.3390/cancers14030648

Harofte, S. Z., Soltani, M., Siavashy, S., & Raahemifar, K. (2022). Recent Advances of Utilizing Artificial Intelligence in Lab on a Chip for Diagnosis and Treatment. 18(42), 2203169–2203169. https://doi.org/10.1002/smll.202203169

‌Shi, B.-X., Wang, Y., Lam, T.-L., Huang, W.-H., Zhang, K., Leung, Y.-C., & Chan, H. L. W. (2010). Release monitoring of single cells on a microfluidic device coupled with fluorescence microscopy and electrochemistry. Biomicrofluidics, 4(4), 43009. https://doi.org/10.1063/1.3491470

SH-SY5Y: Human Neuroblastoma Cell Line (ATCC CRL-2266) | Memorial Sloan Kettering Cancer Center. (n.d.). Www.mskcc.org. https://www.mskcc.org/research-advantage/support/technology/tangible-material/human-neuroblastoma-cell-line-sh-sy5y#:~:text=SH%2DSY5Y%20is%20a%20thrice

‌Hansen, A. S., Hao, N., & O’Shea, E. K. (2015). High-throughput microfluidics to control and measure signaling dynamics in single yeast cells. Nature Protocols, 10(8), 1181–1197. https://doi.org/10.1038/nprot.2015.079

Duncombe, T. A., Tentori, A. M., & Herr, A. E. (2015). Microfluidics: reframing biological enquiry. Nature Reviews Molecular Cell Biology, 16(9), 554–567. https://doi.org/10.1038/nrm4041

Brajkovic, S., Dupouy, D. G., de Leval, L., & Gijs, M. A. (2017). Microfluidics for rapid cytokeratin immunohistochemical staining in frozen sections. Laboratory Investigation, 97(8), 983–991. https://doi.org/10.1038/labinvest.2017.49

Migliozzi, D., Pelz, B., Dupouy, D. G., Leblond, A.-L., Soltermann, A., & Gijs, M. A. M. (2019). Microfluidics-assisted multiplexed biomarker detection for in situ mapping of immune cells in tumor sections. Microsystems & Nanoengineering, 5(1), 1–12. https://doi.org/10.1038/s41378-019-0104-z

Liu, L., Bi, M., Wang, Y., Liu, J., Jiang, X., Xu, Z., & Zhang, X. (2021). Artificial intelligence-powered microfluidics for nanomedicine and materials synthesis. Nanoscale, 13(46), 19352–19366. https://doi.org/10.1039/d1nr06195j

María Sancho-Albero, Sebastian, V., J. Sesé, Pazo-Cid, R., Mendoza, G., Arruebo, M., Martin-Duque, P., & Santamaria, J. (2020). Isolation of exosomes from whole blood by a new microfluidic device: proof of concept application in the diagnosis and monitoring of pancreatic cancer. 18(1). https://doi.org/10.1186/s12951-020-00701-7

Mani, V., Lyu, Z., Kumar, V., Ercal, B., Chen, H., Malhotra, S. V., & Demirci, U. (2019). Epithelial-to-Mesenchymal Transition (EMT) and Drug Response in Dynamic Bioengineered Lung Cancer Microenvironment. Advanced biosystems, 3(1), e1800223. https://doi.org/10.1002/adbi.201800223

Published

02-29-2024

How to Cite

Platzman, M., & Rahman, M. (2024). Biophysical Mechanisms of Microfluidic Devices: Future in Diagnostics and Microcellular Analyses. Journal of Student Research, 13(1). https://doi.org/10.47611/jsrhs.v13i1.6036

Issue

Section

HS Review Articles