The Impact of Lifestyle Factors During Pregnancy on the Epigenome and Subsequent Risk of Disease

Authors

  • Megan Sargent Staples High School
  • Abigail Reed

DOI:

https://doi.org/10.47611/jsrhs.v13i1.6020

Keywords:

epigenetics, biology, disease, diseases, disease development, cancer, smoking, diet, epigenome, methylation, acetylation, diabetes, review

Abstract

While genetic factors have long been known to play a significant role in determining the risk of diseases, less understood is the role lifestyle factors have. Epigenetics is an emerging area of study that seeks to explain how the environment can indirectly influence our genome by causing chemical changes surrounding our DNA. These modifications, collectively called the epigenome, are often permanent and thus can be passed down to future generations. Concerningly, epigenetic modifications have been associated with a wide range of diseases, including cancer, diabetes, and schizophrenia. The rapid development of fetal cells has made pregnancy a time of added worry over the possible implications of such changes, especially considering the dependence of the fetus on maternal decisions. This review focuses on three major lifestyle factors during pregnancy, including diet, stress, and the presence or absence of smoking, and evaluates the risk of each in the development of future diseases. Understanding the connection between lifestyle and disease could help prevent disease development in the future and give a better understanding of the causes of diseases altogether.

Downloads

Download data is not yet available.

References or Bibliography

References

(1) Belmonte-Mateos, C., & Pujades, C. (2021). From cell states to cell fates: How cell proliferation and neuronal differentiation are coordinated during embryonic development. Frontiers. https://www.frontiersin.org/articles/10.3389/fnins.2021.781160/full

(2) Selevan, S. G., Kimmel, C. A., & Mendola, P. (2000). Identifying critical windows of exposure for children's health. Environmental health perspectives, 108 Suppl 3(Suppl 3), 451–455. https://doi.org/10.1289/ehp.00108s3451

(3) Barker, D. J. (2007). The origins of the developmental origins theory. Journal of Internal Medicine, 261(5), 412–417. https://doi.org/10.1111/j.1365-2796.2007.01809.x

(4) Triche, E. W., & Hossain, N. (2007). Environmental factors implicated in the causation of adverse pregnancy outcome. Seminars in perinatology, 31(4), 240–242. https://doi.org/10.1053/j.semperi.2007.07.013

(5) Loscalzo, J., & Handy, D. E. (2014). Epigenetic modifications: basic mechanisms and role in cardiovascular disease (2013 Grover Conference series). Pulmonary circulation, 4(2), 169–174. https://doi.org/10.1086/675979

(6) Dhar, G. A., Saha, S., Mitra, P., & Nag Chaudhuri, R. (2021). DNA methylation and regulation of gene expression: Guardian of our health. The Nucleus: an international journal of cytology and allied topics, 64(3), 259–270. https://doi.org/10.1007/s13237-021-00367-y

(7) Bannister, A. J., & Kouzarides, T. (2011). Regulation of chromatin by histone modifications. Cell Research, 21(3), 381–395. https://doi.org/10.1038/cr.2011.22

(8) Castel, S. E., & Martienssen, R. A. (2013). RNA interference in the nucleus: roles for small RNAs in transcription, epigenetics and beyond. Nature reviews. Genetics, 14(2), 100–112. https://doi.org/10.1038/nrg3355

(9) Park, J. E., Jardine, L., Gottgens, B., Teichmann, S. A., & Haniffa, M. (2020). Prenatal development of human immunity. Science (New York, N.Y), 368(6491), 600–603. https://doi.org/10.1126/science.aaz9330

(10) Scher M. S. (2021). "The First Thousand Days" Define a Fetal/Neonatal Neurology Program. Frontiers in pediatrics, 9, 683138. https://doi.org/10.3389/fped.2021.683138

(11) Faa, G., Marcialis, M. A., Ravarino, A., Piras, M., Pintus, M. C., & Fanos, V. (2014). Fetal programming of the human brain: is there a link with insurgence of neurodegenerative disorders in adulthood?. Current medicinal chemistry, 21(33), 3854–3876. https://doi.org/10.2174/0929867321666140601163658

(12) Ho D. H. (2014). Transgenerational epigenetics: the role of maternal effects in cardiovascular development. Integrative and comparative biology, 51(1), 43–51. https://doi.org/10.1093/icb/icu031

(13) Gluckman, P. D., & Hanson, M. A. (2004). Developmental origins of disease paradigm: A mechanistic and evolutionary perspective. Pediatric Research, 56(3), 311–317. https://doi.org/10.1203/01.pdr.0000135998.08025.fb

(14) Luck, W., Nau, H., Hansen, R., & Steldinger, R. (1985). Extent of nicotine and cotinine transfer to the human fetus, placenta and amniotic fluid of smoking mothers. Developmental pharmacology and therapeutics, 8(6), 384–395. https://doi.org/10.1159/000457063

(15) Dahlerup, B. R., Egsmose, E. L., Siersma, V., Mortensen, E. L., Hedegaard, M., Knudsen, L. E., & Mathiesen, L. (2018). Maternal stress and placental function, a study using questionnaires and biomarkers at birth. PloS one, 13(11), e0207184. https://doi.org/10.1371/journal.pone.0207184

(16) Acevedo, N., Alashkar Alhamwe, B., Caraballo, L., Ding, M., Ferrante, A., Garn, H., Garssen, J., Hii, C. S., Irvine, J., Llinás-Caballero, K., López, J. F., Miethe, S., Perveen, K., Pogge von Strandmann, E., Sokolowska, M., Potaczek, D. P., & van Esch, B. C. A. M. (2021). Perinatal and Early-Life Nutrition, Epigenetics, and Allergy. Nutrients, 13(3), 724. https://doi.org/10.3390/nu13030724

(17) Armstrong, G. L., Conn, L. A., & Pinner, R. W. (1999). Trends in infectious disease mortality in the United States during the 20th century. JAMA, 281(1), 61–66. https://doi.org/10.1001/jama.281.1.61

(18) Noncommunicable diseases. WHO. (2022). August 4, 2023. https://www.who.int/news-room/fact-sheets/detail/noncommunicable-diseases

(19) Remnant, J., & Adams, J. (2015). The nutritional content and cost of supermarket ready-meals. Cross-sectional analysis. Appetite, 92, 36–42. https://doi.org/10.1016/j.appet.2015.04.069

(20) Barker D. J. (1995). Fetal origins of coronary heart disease. BMJ (Clinical research ed.), 311(6998), 171–174. https://doi.org/10.1136/bmj.311.6998.171

(21) Childs, C. E., Calder, P. C., & Miles, E. A. (2019). Diet and Immune Function. Nutrients, 11(8), 1933. https://doi.org/10.3390/nu11081933

(22) Nie, C., He, T., Zhang, W., Zhang, G., & Ma, X. (2018). Branched Chain Amino Acids: Beyond Nutrition Metabolism. International journal of molecular sciences, 19(4), 954. https://doi.org/10.3390/ijms19040954

(23) Singh, R. K., Chang, H. W., Yan, D., Lee, K. M., Ucmak, D., Wong, K., Abrouk, M., Farahnik, B., Nakamura, M., Zhu, T. H., Bhutani, T., & Liao, W. (2017). Influence of diet on the gut microbiome and implications for human health. , (1), 73. https://doi.org/10.1186/s12967-017-1175-y

(24) Stinson, L. F., Boyce, M. C., Payne, M. S., & Keelan, J. A. (2019). The Not-so-Sterile Womb: Evidence That the Human Fetus Is Exposed to Bacteria Prior to Birth. Frontiers in microbiology, 10, 1124. https://doi.org/10.3389/fmicb.2019.01124

(25) Burdge, G. C., Slater-Jefferies, J., Torrens, C., Phillips, E. S., Hanson, M. A., & Lillycrop, K. A. (2007). Dietary protein restriction of pregnant rats in the F0 generation induces altered methylation of hepatic gene promoters in the adult male offspring in the F1 and F2 generations. The British journal of nutrition, (3), 435–439. https://doi.org/10.1017/S0007114507352392

(26) Zhang, Q., Xiao, X., Zheng, J., Li, M., Yu, M., Ping, F., Wang, T., & Wang, X. (2019). A Maternal High-Fat Diet Induces DNA Methylation Changes That Contribute to Glucose Intolerance in Offspring. Frontiers in endocrinology, 10, 871. https://doi.org/10.3389/fendo.2019.00871

(27)Keleher, M. R., Zaidi, R., Shah, S., Oakley, M. E., Pavlatos, C., El Idrissi, S., Xing, X., Li, D., Wang, T., & Cheverud, J. M. (2018). Maternal high-fat diet associated with altered gene expression, DNA methylation, and obesity risk in mouse offspring. PloS one, 13(2), e0192606. https://doi.org/10.1371/journal.pone.0192606

(28) Heijmans, B. T., Tobi, E. W., Stein, A. D., Putter, H., Blauw, G. J., Susser, E. S., Slagboom, P. E., & Lumey, L. H. (2008). Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proceedings of the National Academy of Sciences of the United States of America, 105(44), 17046–17049. https://doi.org/10.1073/pnas.0806560105

(29) Susanne R. De Rooij, Laura S. Bleker, Rebecca C. Painter, Anita C. Ravelli & Tessa J. Roseboom (2022) Lessons learned from 25 Years of Research into Long term Consequences of Prenatal Exposure to the Dutch famine 1944–45: The Dutch famine Birth Cohort, International Journal of Environmental Health Research, 32:7, 1432-1446, https://doi.org/10.1080/09603123.2021.1888894

(30) Godfrey, K. M., Gluckman, P. D., & Hanson, M. A. (2010). Developmental origins of metabolic disease: life course and intergenerational perspectives. Trends in endocrinology and metabolism: TEM, 21(4), 199–205. https://doi.org/10.1016/j.tem.2009.12.008

(31) Bellinger, L., Lilley, C., & Langley-Evans, S. (2004). Prenatal exposure to a maternal low-protein diet programmes a preference for high-fat foods in the young adult rat. (3), 513-520. doi:10.1079/BJN20041224

(32) Khan, I., Dekou, V., Hanson, M., Poston, L., & Taylor, P. (2004). Predictive adaptive responses to maternal high-fat diet prevent endothelial dysfunction but not hypertension in adult rat offspring. Circulation, 110(9), 1097–1102. https://doi.org/10.1161/01.CIR.0000139843.05436.A0

(33) Woodall, S. M., Johnston, B. M., Breier, B. H., & Gluckman, P. D. (1996). Chronic maternal undernutrition in the rat leads to delayed postnatal growth and elevated blood pressure of offspring. Pediatric research, 40(3), 438–443. https://doi.org/10.1203/00006450-199609000-00012

(34) Acevedo, N., Alashkar Alhamwe, B., Caraballo, L., Ding, M., Ferrante, A., Garn, H., Garssen, J., Hii, C. S., Irvine, J., Llinás-Caballero, K., López, J. F., Miethe, S., Perveen, K., Pogge von Strandmann, E., Sokolowska, M., Potaczek, D. P., & van Esch, B. C. A. M. (2021). Perinatal and Early-Life Nutrition, Epigenetics, and Allergy. Nutrients, 13(3), 724. https://doi.org/10.3390/nu13030724

(35) Simmer K. (2016). Fish-oil supplementation: the controversy continues. The American journal of clinical nutrition, 103(1), 1–2. https://doi.org/10.3945/ajcn.115.126607

(36) Dahlerup, B. R., Egsmose, E. L., Siersma, V., Mortensen, E. L., Hedegaard, M., Knudsen, L. E., & Mathiesen, L. (2018). Maternal stress and placental function, a study using questionnaires and biomarkers at birth. PloS one, 13(11), e0207184. https://doi.org/10.1371/journal.pone.0207184

(37) Wadhwa, P. D., Sandman, C. A., Porto, M., Dunkel-Schetter, C., & Garite, T. J. (1993). The association between prenatal stress and infant birth weight and gestational age at birth: a prospective investigation. American journal of obstetrics and gynecology, 169(4), 858–865. https://doi.org/10.1016/0002-9378(93)90016-c

(38) Parcells, D. A. (2010). Women’s mental health nursing: depression, anxiety and stress during pregnancy. Wiley Online Library. Journal of psychiatric and mental health nursing vol. 17,9 (2010): 813-20. doi:10.1111/j.1365-2850.2010.01588.x

(39) Danieli, Y. (Ed.). (1998). International handbook of multigenerational legacies of trauma. Plenum Press. https://doi.org/10.1007/978-1-4757-5567-1

(40) Yehuda, R., Schmeidler, J., Wainberg, M., Binder-Brynes, K., & Duvdevani, T. (1998). Vulnerability to posttraumatic stress disorder in adult offspring of Holocaust survivors. The American journal of psychiatry, 155(9), 1163–1171. https://doi.org/10.1176/ajp.155.9.1163

(41) Yehuda, R., Bell, A., Bierer, L. M., & Schmeidler, J. (2008). Maternal, not paternal, PTSD is related to increased risk for PTSD in offspring of Holocaust survivors. Journal of psychiatric research, 42(13), 1104–1111. https://doi.org/10.1016/j.jpsychires.2008.01.002

(42) Matrisciano, F., Tueting, P., Dalal, I., Kadriu, B., Grayson, D. R., Davis, J. M., Nicoletti, F., & Guidotti, A. (2013). Epigenetic modifications of GABAergic interneurons are associated with the schizophrenia-like phenotype induced by prenatal stress in mice. Neuropharmacology, 68, 184–194. https://doi.org/10.1016/j.neuropharm.2012.04.013

(43) Grayson, D. R., & Guidotti, A. (2013). The dynamics of DNA methylation in schizophrenia and related psychiatric disorders. Neuropsychopharmacology: official publications of the American College of Neuropsychopharmacology, 38(1), 138–166. https://doi.org/10.1038/npp.2012.125

(44) Ng P. C. (2000). The fetal and neonatal hypothalamic-pituitary-adrenal axis. Archives of disease in childhood. Fetal and neonatal edition, 82(3), F250–F254. https://doi.org/10.1136/fn.82.3.f250

(45) Kertes, D. A., Kamin, H. S., Hughes, D. A., Rodney, N. C., Bhatt, S., & Mulligan, C. J. (2016). Prenatal Maternal Stress Predicts Methylation of Genes Regulating the Hypothalamic-Pituitary-Adrenocortical System in Mothers and Newborns in the Democratic Republic of Congo. Child development, 87(1), 61–72. https://doi.org/10.1111/cdev.12487

(46) Naughton, M., Dinan, T. G., & Scott, L. V. (2014). Corticotropin-releasing hormone and the hypothalamic-pituitary-adrenal axis in psychiatric disease. Handbook of clinical neurology, 124, 69–91. https://doi.org/10.1016/B978-0-444-59602-4.00005-8

(47) Daskalakis, N. P., Lehrner, A., & Yehuda, R. (2013). Endocrine aspects of post-traumatic stress disorder and implications for diagnosis and treatment. Endocrinology and metabolism clinics of North America, 42(3), 503–513. https://doi.org/10.1016/j.ecl.2013.05.004

(48) Kinlein, S. A., Wilson, C. D., & Karatsoreos, I. N. (2015). Dysregulated hypothalamic-pituitary-adrenal axis function contributes to altered endocrine and neurobehavioral responses to acute stress. Frontiers in psychiatry, 6, 31. https://doi.org/10.3389/fpsyt.2015.00031

(49) Radtke, K. M., Ruf, M., Gunter, H. M., Dohrmann, K., Schauer, M., Meyer, A., & Elbert, T. (2011). Transgenerational impact of intimate partner violence on methylation in the promoter of the glucocorticoid receptor. Translational psychiatry, 1(7), e21. https://doi.org/10.1038/tp.2011.21

(50) Wang, R., Wang, J., Xu, S., Wang, L., Song, M., An, C., & Wang, X. (2022). Prenatal earthquake stress exposure in different gestational trimesters is associated with methylation changes in the glucocorticoid receptor gene (NR3C1) and long-term working memory in adulthood. Translational psychiatry, 12(1), 176. https://doi.org/10.1038/s41398-022-01945-7

(51) Needham, B. L., Smith, J. A., Zhao, W., Wang, X., Mukherjee, B., Kardia, S. L., Shively, C. A., Seeman, T. E., Liu, Y., & Diez Roux, A. V. (2015). Life course socioeconomic status and DNA methylation in genes related to stress reactivity and inflammation: The multi-ethnic study of atherosclerosis. Epigenetics, 10(10), 958–969. https://doi.org/10.1080/15592294.2015.1085139

(52) Bellavance, M. A., & Rivest, S. (2014). The HPA - Immune Axis and the Immunomodulatory Actions of Glucocorticoids in the Brain. Frontiers in immunology, 5, 136. https://doi.org/10.3389/fimmu.2014.00136

(53) Cushing’s Syndrome. NIH. August 4, 2023. https://www.ninds.nih.gov/health-information/disorders

(54) Cao-Lei, L., Massart, R., Suderman, M. J., Machnes, Z., Elgbeili, G., Laplante, D. P., Szyf, M., & King, S. (2014). DNA methylation signatures triggered by prenatal maternal stress exposure to a natural disaster: Project Ice Storm. PloS one, 9(9), e107653. https://doi.org/10.1371/journal.pone.0107653

(55) Dancause, K. N., Veru, F., Andersen, R. E., Laplante, D. P., & King, S. (2013). Prenatal stress due to a natural disaster predicts insulin secretion in adolescence. Early human development, 89(9), 773–776. https://doi.org/10.1016/j.earlhumdev.2013.06.006

(56) Dancause, K. N., Laplante, D. P., Fraser, S., Brunet, A., Ciampi, A., Schmitz, N., & King, S. (2012). Prenatal exposure to a natural disaster increases risk for obesity in 5½-year-old children. Pediatric research, 71(1), 126–131. https://doi.org/10.1038/pr.2011.18

(57) Ravi, M., Bernabe, B., & Michopoulos, V. (2022). Stress-Related Mental Health Disorders and Inflammation in Pregnancy: The Current Landscape and the Need for Further Investigation. Frontiers in psychiatry, 13, 868936. https://doi.org/10.3389/fpsyt.2022.868936

(58) Saha, S. P., Bhalla, D. K., Whayne, T. F., Jr, & Gairola, C. (2007). Cigarette smoke and adverse health effects: An overview of research trends and future needs. The International journal of angiology: official publication of the International College of Angiology Inc, 16(3), 77–83. https://doi.org/10.1055/s-0031-1278254

(59) Drake, P., Driscoll, A. K., & Mathews, T. (2018). Cigarette smoking during pregnancy: United States, 2016. CDC. August 4, 2023. https://www.cdc.gov/nchs/data/databriefs/db305.pdf

(60) Lange, S., Probst, C., Rehm, J., & Popova, S. (2018). National, regional, and global prevalence of smoking during pregnancy in the general population: a systematic review and meta-analysis. The Lancet. Global health, 6(7), e769–e776. https://doi.org/10.1016/S2214-109X(18)30223-7

(61) Pastrakuljic, A., Schwartz, R., Simone, C., Derewlany, L. O., Knie, B., & Koren, G. (1998). Transplacental transfer and biotransformation studies of nicotine in the human placental cotyledon perfused in vitro. Life sciences, 63(26), 2333–2342. https://doi.org/10.1016/s0024-3205(98)00522-0

(62) Toledo-Rodriguez, M., Lotfipour, S., Leonard, G., Perron, M., Richer, L., Veillette, S., Pausova, Z., & Paus, T. (2010). Maternal smoking during pregnancy is associated with epigenetic modifications of the brain-derived neurotrophic factor-6 exon in adolescent offspring. American journal of medical genetics. Part B, Neuropsychiatric genetics: the official publication of the International Society of Psychiatric Genetics, 153B(7), 1350–1354. https://doi.org/10.1002/ajmg.b.31109

(63) Rauschert, S., Melton, P. E., Burdge, G., Craig, J. M., Godfrey, K. M., Holbrook, J. D., Lillycrop, K., Mori, T. A., Beilin, L. J., Oddy, W. H., Pennell, C., & Huang, R. C. (2019). Maternal Smoking During Pregnancy Induces Persistent Epigenetic Changes Into Adolescence, Independent of Postnatal Smoke Exposure and Is Associated With Cardiometabolic Risk. Frontiers in genetics, 10, 770. https://doi.org/10.3389/fgene.2019.00770

(64) Mishra, A., Chaturvedi, P., Datta, S., Sinukumar, S., Joshi, P., & Garg, A. (2015). Harmful effects of nicotine. Indian journal of medical and paediatric oncology: offical journal of Indian Society of Medical & Paediatric Oncology, 36(1), 24–31. https://doi.org/10.4103/0971-5851.151771

(65) McEvoy, C. T., & Spindel, E. R. (2017). Pulmonary Effects of Maternal Smoking on the Fetus and Child: Effects on Lung Development, Respiratory Morbidities, and Life Long Lung Health. Paediatric respiratory reviews, 21, 27–33. https://doi.org/10.1016/j.prrv.2016.08.005

(66) Noakes, P. S., Hale, J., Thomas, R., Lane, C., Devadason, S. G., & Prescott, S. L. (2006). Maternal smoking is associated with impaired neonatal toll-like-receptor-mediated immune responses. The European respiratory journal, 28(4), 721–729. https://doi.org/10.1183/09031936.06.00050206

(67) Xi, S., Yang, M., Tao, Y., Xu, H., Shan, J., Inchauste, S., Zhang, M., Mercedes, L., Hong, J. A., Rao, M., & Schrump, D. S. (2010). Cigarette smoke induces C/EBP-β-mediated activation of miR-31 in normal human respiratory epithelia and lung cancer cells. PloS one, 5(10), e13764. https://doi.org/10.1371/journal.pone.0013764

(68) Al Mamun, A., O'Callaghan, F. V., Alati, R., O'Callaghan, M., Najman, J. M., Williams, G. M., & Bor, W. (2006). Does maternal smoking during pregnancy predict the smoking patterns of young adult offspring? A birth cohort study. Tobacco control, 15(6), 452–457. https://doi.org/10.1136/tc.2006.016790

(69) L., Benediktsdóttir, B., Bertelsen, R. J., Bråbäck, L., Carsin, A. E., Dharmage, S. C., Dratva, J., Forsberg, B., Gomez Real, F., Heinrich, J., Holloway, J. W., Holm, M., Janson, C., Jögi, R., Leynaert, B., Malinovschi, A., Marcon, A., … Ageing Lungs in European Cohorts (ALEC) Study (2018). A three-generation study on the association of tobacco smoking with asthma. International journal of epidemiology, 47(4), 1106–1117. https://doi.org/10.1093/ije/dyy031

(70) Zheng, W., Suzuki, K., Tanaka, T., Kohama, M., Yamagata, Z., & Okinawa Child Health Study Group (2016). Association between Maternal Smoking during Pregnancy and Low Birthweight: Effects by Maternal Age. PloS one, 11(1), e0146241. https://doi.org/10.1371/journal.pone.0146241

(71) Kataoka, M. C., Carvalheira, A. P. P., Ferrari, A. P., Malta, M. B., de Barros Leite Carvalhaes, M. A., & de Lima Parada, C. M. G. (2018). Smoking during pregnancy and harm reduction in birth weight: a cross-sectional study. BMC pregnancy and childbirth, 18(1), 67. https://doi.org/10.1186/s12884-018-1694-4

(72) Milnerowicz-Nabzdyk, E., & Bizoń, A. (2014). Effect of cigarette smoking on vascular flows in pregnancies complicated by intrauterine growth restriction. Reproductive toxicology (Elmsford, N.Y.), 50, 27–35. https://doi.org/10.1016/j.reprotox.2014.10.002

(73) Roifman, M., Choufani, S., Turinsky, A. L., Drewlo, S., Keating, S., Brudno, M., Kingdom, J., & Weksberg, R. (2016). Genome-wide placental DNA methylation analysis of severely growth-discordant monochorionic twins reveals novel epigenetic targets for intrauterine growth restriction. Clinical epigenetics, 8, 70. https://doi.org/10.1186/s13148-016-0238-x

(74) Yang, L., Wang, H., Yang, L., Zhao, M., Guo, Y., Bovet, P., & Xi, B. (2022). Maternal cigarette smoking before or during pregnancy increases the risk of birth congenital anomalies: a population-based retrospective cohort study of 12 million mother-infant pairs. BMC medicine, 20(1), 4. https://doi.org/10.1186/s12916-021-02196-x

(75) Diamanti, A., Papadakis, S., Schoretsaniti, S., Rovina, N., Vivilaki, V., Gratziou, C., & Katsaounou, P. A. (2019). Smoking cessation in pregnancy: An update for maternity care practitioners. Tobacco induced diseases, 17, 57. https://doi.org/10.18332/tid/109906

(76) Mørkve Knudsen, G. T., Rezwan, F. I., Johannessen, A., Skulstad, S. M., Bertelsen, R. J., Real, F. G., Krauss-Etschmann, S., Patil, V., Jarvis, D., Arshad, S. H., Holloway, J. W., & Svanes, C. (2019). Epigenome-wide association of father's smoking with offspring DNA methylation: a hypothesis-generating study. Environmental epigenetics, 5(4), dvz023. https://doi.org/10.1093/eep/dvz023

(77) Knopik, V. S., Marceau, K., Bidwell, L. C., & Rolan, E. (2019). Prenatal substance exposure and offspring development: Does DNA methylation play a role?. Neurotoxicology and teratology, 71, 50–63. https://doi.org/10.1016/j.ntt.2018.01.009

(78) Fardi, M., Solali, S., & Farshdousti Hagh, M. (2018). Epigenetic mechanisms as a new approach in cancer treatment: An updated review. Genes & diseases, 5(4), 304–311. https://doi.org/10.1016/j.gendis.2018.06.003

(79) Bannister, A. J., Schenider, R., & Kouzarides, T. (2002). Histone Methylation. Cell. August 4, 2023. https://www.cell.com/abstract/S0092-8674(02)00798-5

Published

02-29-2024

How to Cite

Sargent, M., & Reed, A. (2024). The Impact of Lifestyle Factors During Pregnancy on the Epigenome and Subsequent Risk of Disease. Journal of Student Research, 13(1). https://doi.org/10.47611/jsrhs.v13i1.6020

Issue

Section

HS Review Articles