The Effect of Antioxidants on Olfactory Dysfunction in Parkinson's Disease

Authors

  • Neelesh Pandey Gulliver Preparatory School
  • Dr. Tiffany Schmidt

DOI:

https://doi.org/10.47611/jsrhs.v13i1.6016

Keywords:

Parkinson's disease, olfactory dysfunction, antioxidants

Abstract

Parkinson’s disease is one of the most prevalent diseases worldwide, with approximately 10 million people worldwide being affected in 2016. Olfactory dysfunction is a common hallmark of early Parkinson’s disease, and research indicates that antioxidants work against reactive oxygen species(ROS) in Parkinson’s disease. Lewy bodies,  alpha-synuclein protein aggregates, are the cause of the death of dopaminergic neurons in Parkinson’s disease. Given olfactory dysfunction is one of the first symptoms of Parkinson’s disease, it has intrigued many to discover its underlying importance. When Lewy bodies are found in the olfactory bulb, there was a greater than 90% correlation with the presence of Parkinson’s disease. It has been observed that alpha-synuclein aggregation may begin in the olfactory bulb before moving to other parts of the brain. Free radicals, such as ROS, are related to dopamine such as oxidized dopamine, and can help sustain alpha-synuclein toxic forms, leading to aggregation. Therefore, antioxidants could play a substantial role in mediating the effects of ROS. This paper will review our current understanding of the usage of antioxidants in alleviating the symptoms posed by oxidative stress and what that could mean for Parkinson’s disease models by providing a critique of 4 papers. Each paper will discuss the usage of treatment for olfactory dysfunction and the potential implications that follow the results. After, the paper will propose new studies to determine whether antioxidants are effective in diminishing the extent of olfactory dysfunction in patients with Parkinson’s disease.

Downloads

Download data is not yet available.

References or Bibliography

Ahmed, S., El-Sayed, M. M., Kandeil, M. A., & Khalaf, M. M. (2022). Empagliflozin attenuates neurodegeneration through antioxidant, anti-inflammatory, and modulation of α-synuclein and Parkin levels in rotenone-induced Parkinson's disease in rats. Saudi pharmaceutical journal : SPJ : the official publication of the Saudi Pharmaceutical Society, 30(6), 863–873. https://doi.org/10.1016/j.jsps.2022.03.005

Alegre-Abarrategui, J., Ansorge, O., Esiri, M., & Wade-Martins, R. (2008). LRRK2 is a component of granular alpha-synuclein pathology in the brainstem of Parkinson's disease. Neuropathology and applied neurobiology, 34(3), 272–283. https://doi.org/10.1111/j.1365-2990.2007.00888.x

Beach, T. G., White, C. L., 3rd, Hladik, C. L., Sabbagh, M. N., Connor, D. J., Shill, H. A., Sue, L. I., Sasse, J., Bachalakuri, J., Henry-Watson, J., Akiyama, H., Adler, C. H., & Arizona Parkinson's Disease Consortium (2009). Olfactory bulb alpha-synucleinopathy has high specificity and sensitivity for Lewy body disorders. Acta neuropathologica, 117(2), 169–174. https://doi.org/10.1007/s00401-008-0450-7

Beecher, K., St John, J. A., & Chehrehasa, F. (2018). Factors that modulate olfactory dysfunction. Neural regeneration research, 13(7), 1151–1155. https://doi.org/10.4103/1673-5374.235018

Betteridge D. J. (2000). What is oxidative stress?. Metabolism: clinical and experimental, 49(2 Suppl 1), 3–8. https://doi.org/10.1016/s0026-0495(00)80077-3

Bloem, B. R., Okun, M. S., & Klein, C. (2021). Parkinson's disease. Lancet (London, England), 397(10291), 2284–2303. https://doi.org/10.1016/S0140-6736(21)00218-X

Braak, H., Rüb, U., Gai, W. P., & Del Tredici, K. (2003). Idiopathic Parkinson's disease: possible routes by which vulnerable neuronal types may be subject to neuroinvasion by an unknown pathogen. Journal of neural transmission (Vienna, Austria : 1996), 110(5), 517–536. https://doi.org/10.1007/s00702-002-0808-2

Cabin, D. E., Shimazu, K., Murphy, D., Cole, N. B., Gottschalk, W., McIlwain, K. L., Orrison, B., Chen, A., Ellis, C. E., Paylor, R., Lu, B., & Nussbaum, R. L. (2002). Synaptic vesicle depletion correlates with attenuated synaptic responses to prolonged repetitive stimulation in mice lacking alpha-synuclein. The Journal of neuroscience : the official journal of the Society for Neuroscience, 22(20), 8797–8807. https://doi.org/10.1523/JNEUROSCI.22-20-08797.2002

Causes. (2023). Parkinson's Foundation. https://www.parkinson.org/understanding-parkinsons/causes ‌‌

Cavaco, S., Gonçalves, A., Mendes, A., Vila-Chã, N., Moreira, I., Fernandes, J., Damásio, J., Teixeira-Pinto, A., & Bastos Lima, A. (2015). Abnormal Olfaction in Parkinson's Disease Is Related to Faster Disease Progression. Behavioural neurology, 2015, 976589. https://doi.org/10.1155/2015/976589

Chan, T., Chow, A. M., Cheng, X. R., Tang, D. W., Brown, I. R., & Kerman, K. (2012). Oxidative stress effect of dopamine on α-synuclein: electroanalysis of solvent interactions. ACS chemical neuroscience, 3(7), 569–574. https://doi.org/10.1021/cn300034t

Chen, F., Liu, W., Liu, P., Wang, Z., Zhou, Y., Liu, X., & Li, A. (2021). α-Synuclein aggregation in the olfactory bulb induces olfactory deficits by perturbing granule cells and granular-mitral synaptic transmission. NPJ Parkinson's disease, 7(1), 114. https://doi.org/10.1038/s41531-021-00259-7

Choudhury, G. R., & Daadi, M. M. (2018). Charting the onset of Parkinson-like motor and non-motor symptoms in nonhuman primate model of Parkinson's disease. PloS one, 13(8), e0202770. https://doi.org/10.1371/journal.pone.0202770

Clayton, D. F., & George, J. M. (1999). Synucleins in synaptic plasticity and neurodegenerative disorders. Journal of neuroscience research, 58(1), 120–129.

Colín-Barenque, L., Bizarro-Nevares, P., González Villalva, A., Pedraza-Chaverri, J., Medina-Campos, O. N., Jimenez-Martínez, R., Rodríguez-Rangel, D. S., Reséndiz, S., & Fortoul, T. I. (2018). Neuroprotective effect of carnosine in the olfactory bulb after vanadium inhalation in a mouse model. International journal of experimental pathology, 99(4), 180–188. https://doi.org/10.1111/iep.12285

Cooper, J. F., Spielbauer, K. K., Senchuk, M. M., Nadarajan, S., Colaiácovo, M. P., & Van Raamsdonk, J. M. (2018). α-synuclein expression from a single copy transgene increases sensitivity to stress and accelerates neuronal loss in genetic models of Parkinson's disease. Experimental neurology, 310, 58–69. https://doi.org/10.1016/j.expneurol.2018.09.001

Dirkx, M. F., den Ouden, H. E., Aarts, E., Timmer, M. H., Bloem, B. R., Toni, I., & Helmich, R. C. (2017). Dopamine controls Parkinson's tremor by inhibiting the cerebellar thalamus. Brain : a journal of neurology, 140(3), 721–734. https://doi.org/10.1093/brain/aww331

Dranka, B. P., Gifford, A., McAllister, D., Zielonka, J., Joseph, J., O'Hara, C. L., Stucky, C. L., Kanthasamy, A. G., & Kalyanaraman, B. (2014). A novel mitochondrially-targeted apocynin derivative prevents hyposmia and loss of motor function in the leucine-rich repeat kinase 2 (LRRK2(R1441G)) transgenic mouse model of Parkinson's disease. Neuroscience letters, 583, 159–164. https://doi.org/10.1016/j.neulet.2014.09.042

Gaenslen, A., Swid, I., Liepelt-Scarfone, I., Godau, J., & Berg, D. (2011). The patients' perception of prodromal symptoms before the initial diagnosis of Parkinson's disease. Movement disorders : official journal of the Movement Disorder Society, 26(4), 653–658. https://doi.org/10.1002/mds.23499

Gao, X., Cassidy, A., Schwarzschild, M. A., Rimm, E. B., & Ascherio, A. (2012). Habitual intake of dietary flavonoids and risk of Parkinson disease. Neurology, 78(15), 1138–1145. https://doi.org/10.1212/WNL.0b013e31824f7fc4

Gibb, W. R., & Lees, A. J. (1988). The relevance of the Lewy body to the pathogenesis of idiopathic Parkinson's disease. Journal of neurology, neurosurgery, and psychiatry, 51(6), 745–752. https://doi.org/10.1136/jnnp.51.6.745

Hernandez, D. G., Reed, X., & Singleton, A. B. (2016). Genetics in Parkinson disease: Mendelian versus non-Mendelian inheritance. Journal of neurochemistry, 139 Suppl 1(Suppl 1), 59–74. https://doi.org/10.1111/jnc.13593

How To Use The Sniffin' Sticks. (2019, June 3). MediSense. Retrieved September 24, 2023, from https://www.smelltest.eu/en/smell-and-taste/how-to-use-the-sniffin-sticks/

Huang, W. Y., Zhang, H. C., Liu, W. X., & Li, C. Y. (2012). Survey of antioxidant capacity and phenolic composition of blueberry, blackberry, and strawberry in Nanjing. Journal of Zhejiang University. Science. B, 13(2), 94–102. https://doi.org/10.1631/jzus.B1100137

Hubbard, P. S., Esiri, M. M., Reading, M., McShane, R., & Nagy, Z. (2007). Alpha-synuclein pathology in the olfactory pathways of dementia patients. Journal of anatomy, 211(1), 117–124. https://doi.org/10.1111/j.1469-7580.2007.00748.x

Hummel, T., Sekinger, B., Wolf, S. R., Pauli, E., & Kobal, G. (1997). 'Sniffin' sticks': olfactory performance assessed by the combined testing of odor identification, odor discrimination and olfactory threshold. Chemical senses, 22(1), 39–52. https://doi.org/10.1093/chemse/22.1.39

Hussain, A., Pooryasin, A., Zhang, M., Loschek, L. F., La Fortezza, M., Friedrich, A. B., Blais, C. M., Üçpunar, H. K., Yépez, V. A., Lehmann, M., Gompel, N., Gagneur, J., Sigrist, S. J., & Grunwald Kadow, I. C. (2018). Inhibition of oxidative stress in cholinergic projection neurons fully rescues aging-associated olfactory circuit degeneration in Drosophila. eLife, 7, e32018. https://doi.org/10.7554/eLife.32018

Kalia, L. V., & Lang, A. E. (2015). Parkinson's disease. Lancet (London, England), 386(9996), 896–912. https://doi.org/10.1016/S0140-6736(14)61393-3

Lobo, V., Patil, A., Phatak, A., & Chandra, N. (2010). Free radicals, antioxidants and functional foods: Impact on human health. Pharmacognosy reviews, 4(8), 118–126. https://doi.org/10.4103/0973-7847.70902

Liu, D., Jin, L., Wang, H., Zhao, H., Zhao, C., Duan, C., Lu, L., Wu, B., Yu, S., Chan, P., Li, Y., & Yang, H. (2008). Silencing alpha-synuclein gene expression enhances tyrosine hydroxylase activity in MN9D cells. Neurochemical research, 33(7), 1401–1409. https://doi.org/10.1007/s11064-008-9599-7

Liu, Z., Yu, Y., Li, X., Ross, C. A., & Smith, W. W. (2011). Curcumin protects against A53T alpha-synuclein-induced toxicity in a PC12 inducible cell model for Parkinsonism. Pharmacological research, 63(5), 439–444. https://doi.org/10.1016/j.phrs.2011.01.004

Mori, H., Hattori, N., & Mizuno, Y. (2003). Genotype-phenotype correlation: familial Parkinson disease. Neuropathology : official journal of the Japanese Society of Neuropathology, 23(1), 90–94. https://doi.org/10.1046/j.1440-1789.2003.00476.x

Musgrove, R. E., Helwig, M., Bae, E. J., Aboutalebi, H., Lee, S. J., Ulusoy, A., & Di Monte, D. A. (2019). Oxidative stress in vagal neurons promotes parkinsonian pathology and intercellular α-synuclein transfer. The Journal of clinical investigation, 129(9), 3738–3753. https://doi.org/10.1172/JCI127330

Nemani, V. M., Lu, W., Berge, V., Nakamura, K., Onoa, B., Lee, M. K., Chaudhry, F. A., Nicoll, R. A., & Edwards, R. H. (2010). Increased expression of alpha-synuclein reduces neurotransmitter release by inhibiting synaptic vesicle reclustering after endocytosis. Neuron, 65(1), 66–79. https://doi.org/10.1016/j.neuron.2009.12.023

Perez, R. G., Waymire, J. C., Lin, E., Liu, J. J., Guo, F., & Zigmond, M. J. (2002). A role for alpha-synuclein in the regulation of dopamine biosynthesis. The Journal of neuroscience : the official journal of the Society for Neuroscience, 22(8), 3090–3099. https://doi.org/10.1523/JNEUROSCI.22-08-03090.2002

Rey, N. L., Steiner, J. A., Maroof, N., Luk, K. C., Madaj, Z., Trojanowski, J. Q., Lee, V. M., & Brundin, P. (2016). Widespread transneuronal propagation of α-synucleinopathy triggered in olfactory bulb mimics prodromal Parkinson's disease. The Journal of experimental medicine, 213(9), 1759–1778. https://doi.org/10.1084/jem.20160368

Scudamore, O., & Ciossek, T. (2018). Increased Oxidative Stress Exacerbates α-Synuclein Aggregation In Vivo. Journal of neuropathology and experimental neurology, 77(6), 443–453. https://doi.org/10.1093/jnen/nly024

Sidhu, A., Wersinger, C., & Vernier, P. (2004). alpha-Synuclein regulation of the dopaminergic transporter: a possible role in the pathogenesis of Parkinson's disease. FEBS letters, 565(1-3), 1–5. https://doi.org/10.1016/j.febslet.2004.03.063

Smell and Taste Disorders: Diagnosis - Medical Clinical Policy Bulletins | Aetna. (2013). Aetna.com. https://www.aetna.com/cpb/medical/data/300_399/0390.html

Smell Disorders. (2023, July 31). NIDCD. https://www.nidcd.nih.gov/health/smell-disorders#:~:text=Each%20olfactory%20neuron%20has%20one,brain%2C%20which%20identifies%20the%20smell

Smell Loss & Brain Health. (2023). The Michael J. Fox Foundation for Parkinson's Research | Parkinson's Disease. https://www.michaeljfox.org/smell-loss-brain-health#:~:text=Smell%20Loss%20and%20Parkinson%27s%20Disease,of%20smell%2C%20and%20the%20gut

SNCA gene: MedlinePlus Genetics. (2015). Medlineplus.gov. https://medlineplus.gov/genetics/gene/snca/#:~:text=Parkinson%20disease,-Expand%20Section&text=SNCA%20gene%20mutations%20are%20associated,direct%20cause%20of%20the%20disease

Stefanis L. (2012). α-Synuclein in Parkinson's disease. Cold Spring Harbor perspectives in medicine, 2(2), a009399. https://doi.org/10.1101/cshperspect.a009399

Understanding antioxidants - Harvard Health. (2019, January 31). Harvard Health; Harvard Health. https://www.health.harvard.edu/staying-healthy/understanding-antioxidants#:~:text=Antioxidants%20neutralize%20free%20radicals%20by,other%20cells%20in%20the%20body

Venda, L. L., Cragg, S. J., Buchman, V. L., & Wade-Martins, R. (2010). α-Synuclein and dopamine at the crossroads of Parkinson's disease. Trends in neurosciences, 33(12), 559–568. https://doi.org/10.1016/j.tins.2010.09.004

Wersinger, C., & Sidhu, A. (2003). Attenuation of dopamine transporter activity by alpha-synuclein. Neuroscience letters, 340(3), 189–192. https://doi.org/10.1016/s0304-3940(03)00097-1

Yavich, L., Tanila, H., Vepsäläinen, S., & Jäkälä, P. (2004). Role of alpha-synuclein in presynaptic dopamine recruitment. The Journal of neuroscience : the official journal of the Society for Neuroscience, 24(49), 11165–11170. https://doi.org/10.1523/JNEUROSCI.2559-04.2004

Published

02-28-2024

How to Cite

Pandey, N., & Schmidt, T. (2024). The Effect of Antioxidants on Olfactory Dysfunction in Parkinson’s Disease. Journal of Student Research, 13(1). https://doi.org/10.47611/jsrhs.v13i1.6016

Issue

Section

HS Review Articles