Understanding and Treating Epigenetic Drivers of Cancer

Authors

  • Keya Nanavati Dubai College

DOI:

https://doi.org/10.47611/jsrhs.v13i1.6008

Keywords:

cancer, genetics, epigenetics, drugs

Abstract

Epigenetic modifications, primarily DNA methylation and histone deacetylation, are known to lead to certain cancers due to their effects on tumour suppressor genes and oncogenes. However, there have been limitations on how our understanding of these modifications can provide effective treatments and preventative measures for patients. This article summarises our current understanding of cancers affected by epigenetics, epigenetic therapies in the form of inhibitors, and the use of epigenetic factors as prognostic and predictive biomarkers for patients. Within the development of cancers caused by epigenetics, this article examines differences between sporadic and hereditary cases for colorectal, breast, and ovarian cancer. In terms of treatments, this article lists some of the most well-known DNA methylation and histone deacetylase inhibitors currently under clinical investigation and which cancers they have the potential to treat. Finally, this article explores the possible biomarkers for epigenetic cancers, considering cell-free DNA and microRNA. This article summarises that future studies should explore a variety of factors regarding the causes, treatments, and identification of epigenetic cancers to maximise patient care.

Downloads

Download data is not yet available.

References or Bibliography

Guerrero-Bosagna, C. (2016, June 27). What is epigenetics? - Carlos Guerrero-Bosagna [Video]. YouTube - TED-Ed. https://www.youtube.com/watch?v=_aAhcNjmvhc

Peterson, S., & Rapini, B. (2020, December 18). Epigenetics [Video]. YouTube. https://www.youtube.com/watch?v=MD3Fc0XOjWk

Centers for Disease Control and Prevention. (2023, May 3). Lynch syndrome. Centers for Disease Control and Prevention. https://www.cdc.gov/genomics/disease/colorectal_cancer/lynch.htm

Bhattacharya, P., & McHugh, T. W. (2023, February 14). Lynch syndrome - statpearls - NCBI bookshelf. National Library of Medicine. https://www.ncbi.nlm.nih.gov/books/NBK431096/

Hitchins, P. Megan (2010). Inheritance of Epigenetic Aberrations (Constitutional Epimutations) in Cancer Susceptibility. Science Direct, 70, 201-243. https://doi.org/10.1016/B978-0-12-380866-0.60008-3

Kwok, C. T., Vogelaar, I., van Zelst-Stams, W., Mensenkamp, A. R., Ligtenberg, M. J., Rapkins, R. W., ... & Spurdle, A. B. (2014). The MLH1 c.-27C> A and c. 85G> T variants are linked to dominantly inherited MLH1 epimutation and are borne on a European ancestral haplotype. European Journal of Human Genetics, 22(5), 617-624. doi: 10.1038/ejhg.2013.200

Hitchins, M. P., Wong, J. J., Suthers, G., Suter, C. M., Martin, D. I., Hawkins, N. J., & Ward, R. L. (2007). Inheritance of a cancer-associated MLH1 germ-line epimutation. The New England journal of medicine, 356(7), 697–705. https://doi.org/10.1056/NEJMoa064522

Gonzalo, V., Castellví–Bel, S., & Castells, A. (2007). MLH1 Germ-Line Epimutations: Is There Strong Evidence of Its Inheritance? Gastroenterology, 133(3), 1042–1044. https://doi.org/10.1053/j.gastro.2007.07.043

Boland, C. R., Goel, A., & Patel, S. G. (2020). The genetic and epigenetic landscape of early-onset colorectal cancer. Colorectal Cancer, CRC23. https://doi.org/10.2217/crc-2020-0005

Hansmann, T., Pliushch, G., Leubner, M., Kroll, P., Endt, D., Gehrig, A., ... & Haaf, T. (2012). Constitutive promoter methylation of BRCA1 and RAD51C in patients with familial ovarian cancer and early-onset sporadic breast cancer. Human Molecular Genetics, 21(21), 4669-4679. doi: 10.1093/hmg/dds308

Moufarrij Sara, et al. (2019). Epigenetic therapy for ovarian cancer: promise and progress. Clinical Epigenetics, 11(7). https://doi.org/10.1186/s13148-018-0602-0

Bitler, B. G., Aird, K. M., Garipov, A., Li, H., Amatangelo, M., Kossenkov, A. V., Schultz, D. C., Liu, Q., Shih, I.eM., Conejo-Garcia, J. R., Speicher, D. W., & Zhang, R. (2015). Synthetic lethality by targeting EZH2 methyltransferase activity in ARID1A-mutated cancers. Nature medicine, 21(3), 231–238. https://doi.org/10.1038/nm.3799

Roos, L., Spector, T. D., & Bell, C. G. (2014). Using epigenomic studies in monozygotic twins to improve our understanding of cancer. Epigenomics, 6(3), 299–309. https://doi.org/10.2217/epi.14.13

Yoo, C. B., & Jones, P. A. (2006). Epigenetic therapy of cancer: past, present and future. Nature Reviews Drug Discovery, 5(3), 37-50. doi: 10.1038/nrd1930.

Lakshmaiah, K. C.; Jacob, Linu A.; Aparna, S.; Lokanatha, D.; Saldanha, Smitha C.. (2014). Epigenetic therapy of cancer with histone deacetylase inhibitors. Journal of Cancer Research and Therapeutics, 10(3), 469-478. https://doi.org/10.4103/0973-1482.137937

Dueñas-González, A., Lizano, M., Candelaria, M., Cetina, L., Arce, C., & Cervera, E. (2005). Epigenetics of cervical cancer. An overview and therapeutic perspectives. Molecular Cancer, 4(1), 38. https://doi.org/10.1186/1476-4598-4-38

Du, L., Wang, D., Wei, X., Liu, C., Xiao, Z., Qian, W., Song, Y., & Hou, X. (2022). MS275 as Class I HDAC inhibitor displayed therapeutic potential on malignant ascites by iTRAQ-based quantitative proteomic analysis. BMC Gastroenterology, 22(1). https://doi.org/10.1186/s12876-022-02101-7

Zhao, Q., Fan, J., Hong, W., Li, L., & Wu, M. (2012, December 13). Inhibition of cancer cell proliferation by 5-fluoro-2’-deoxycytidine, a DNA methylation inhibitor, through activation of DNA damage response pathway. Springerplus. https://springerplus.springeropen.com/articles/10.1186/2193-1801-1-65#:~:text=Multiple%20epigenetic%20changes%2C%20including%20alterations,in%20phase%20II%20clinical%20trial.

Lin, X., Asgari, K., Putzi, M. J., Gage, W. R., Yu, X., Cornblatt, B. S., Kumar, A., Piantadosi, S., DeWeese, T. L., De Marzo, A. M., & Nelson, W. G. (2001). Reversal of GSTP1 CpG island hypermethylation and reactivation of pi-class glutathione S-transferase (GSTP1) expression in human prostate cancer cells by treatment with procainamide. Cancer research, 61(24), 8611–8616.

Fang, M. Z., Wang, Y., Ai, N., Hou, Z., Sun, Y., Lu, H., Welsh, W., & Yang, C. S. (2003). Tea polyphenol (-)-epigallocatechin-3-gallate inhibits DNA methyltransferase and reactivates methylation-silenced genes in cancer cell lines. Cancer research, 63(22), 7563–7570.

Bao, Y., Xu, Q., Wang, L., Wei, Y., Hu, B., Wang, J., Liu, D., Zhao, L., & Jing, Y. (2021, January 5). Studying histone deacetylase inhibition and... - ACS publications. ACS Publications. https://pubs.acs.org/doi/10.1021/acsmedchemlett.0c00369

Ou, Y., Zhang, Q., Tang, Y., Lu, Z., Lu, X., Zhou, X., & Liu, C. (2018). DNA methylation enzyme inhibitor RG108 suppresses the radioresistance of esophageal cancer. Oncology reports, 39(3), 993–1002. https://doi.org/10.3892/or.2018.6210

Lee, P., Murphy, B., Miller, R., Menon, V., Banik, N. L., Giglio, P., Lindhorst, S. M., Varma, A. K., Vandergrift, W. A., 3rd, Patel, S. J., & Das, A. (2015). Mechanisms and clinical significance of histone deacetylase inhibitors: epigenetic glioblastoma therapy. Anticancer research, 35(2), 615–625.

Faghihloo, E., Araei, Y., Mohammadi, M. et al. (2016). The effect of oxamflatin on the E-cadherin expression in gastric cancer cell line. Cancer Gene Ther, 23, 396–399. https://doi.org/10.1038/cgt.2016.52

Savickiene, J., Treigyte, G., Valiuliene, G., Stirblyte, I., & Navakauskiene, R. (2014). Epigenetic and molecular mechanisms underlying the antileukemic activity of the histone deacetylase inhibitor belinostat in human acute promyelocytic leukemia cells. Anti-cancer drugs, 25(8), 938–949. https://doi.org/10.1097/CAD.0000000000000122

Sahafnejad, Z., Ramazi, S., & Allahverdi, A. (2023). An Update of Epigenetic Drugs for the Treatment of Cancers and Brain Diseases: A Comprehensive Review. Genes, 14(4), 873. https://doi.org/10.3390/genes14040873

Yao, R., Han, D., Sun, X., Xie , Y., Wu , Q., Fu, C., Yao, Y., Li , H., Li , Z., & Xu, K. (2018, January 2). Scriptaid inhibits cell survival, cell cycle, and promotes apoptosis in multiple myeloma via epigenetic regulation of P21. Experimental Hematology. https://www.sciencedirect.com/science/article/pii/S0301472X17309116#:~:text=Pages%2063%2D72-,Scriptaid%20inhibits%20cell%20survival%2C%20cell%20cycle%2C%20and%20promotes%20apoptosis%20in,via%20epigenetic%20regulation%20of%20p21

Zhang, H., Zhao, X., Liu, H., Jin, H., & Ji, Y. (2019). Trichostatin A inhibits proliferation of PC3 prostate cancer cells by disrupting the EGFR pathway. Oncology letters, 18(1), 687–693. https://doi.org/10.3892/ol.2019.10384

Giles, F., Fischer, T., Cortes, J., Garcia-Manero, G., Beck, J., Ravandi, F., Masson, E., Rae, P., Laird, G., Sharma, S., Kantarjian, H., Dugan, M., Albitar, M., & Bhalla, K. (2006). A phase I study of intravenous LBH589, a novel cinnamic hydroxamic acid analogue histone deacetylase inhibitor, in patients with refractory hematologic malignancies. Clinical cancer research: an official journal of the American Association for Cancer Research, 12(15), 4628–4635. https://doi.org/10.1158/1078-0432.CCR-06-0511

Conte, M., Fontana, E., Nebbioso, A., & Altucci, L. (2020). Marine-Derived Secondary Metabolites as Promising Epigenetic Bio-Compounds for Anticancer Therapy. Marine drugs, 19(1), 15. https://doi.org/10.3390/md19010015

Kamińska, K., Nalejska, E., Kubiak, M., Wojtysiak, J., Żołna, Ł., Kowalewski, J., & Lewandowska, M. A. (2019). Prognostic and predictive epigenetic biomarkers in oncology. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6394434/

Li, W., Guo, L., Tang, W. et al. (2021). Identification of DNA methylation biomarkers for risk of liver metastasis in early-stage colorectal cancer. Clinical Epigenet, 13, 126. https://doi.org/10.1186/s13148-021-01108-3

Brown, L. J., Achinger-Kawecka, J., Portman, N., Clark, S., Stirzaker, C., & Lim, E. (2022). Epigenetic Therapies and Biomarkers in Breast Cancer. Cancers, 14(3), 474. https://doi.org/10.3390/cancers14030474

Koval, A. P., Blagodatskikh, K. A., Kushlinskii, N. E., & Shcherbo, D. S. (2021, April 12). The detection of cancer epigenetic traces in cell-free DNA. Frontiers. https://www.frontiersin.org/articles/10.3389/fonc.2021.662094/full

Mohd Khair, S. Z. N., Abd Radzak, S. M., & Mohamed Yusoff, A. A. (2021, July 15). The uprising of mitochondrial DNA biomarker in cancer. Disease markers. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8302403/

Dong, Y., He, Q., Chen, X., Yang, F., He, L., & Zheng, Y. (2023, June 5). Extrachromosomal DNA (ecdna) in cancer: Mechanisms, functions, and clinical implications. Frontiers. https://www.frontiersin.org/journals/oncology/articles/10.3389/fonc.2023.1194405/full

Lau, B. T., Almeda, A., Schauer, M., McNamara, M., Bai, X., Meng, Q., Partha, M., Grimes, S. M., Lee, H., Heestand, G. M., & Ji, H. P. (2023, May 3). Single-molecule methylation profiles of cell-free DNA in cancer with Nanopore sequencing - genome medicine. BioMed Central. https://genomemedicine.biomedcentral.com/articles/10.1186/s13073-023-01178-3

Filipów, S., & Łaczmański, Ł. (2019). Blood Circulating miRNAs as Cancer Biomarkers for Diagnosis and Surgical Treatment Response. Frontiers in genetics, 10, 169. https://doi.org/10.3389/fgene.2019.00169

Pajares, M. J., Alemany-Cosme, E., Goñi, S., Bandres, E., Palanca-Ballester, C., & Sandoval, J. (2021). Epigenetic Regulation of microRNAs in Cancer: Shortening the Distance from Bench to Bedside. International journal of molecular sciences, 22(14), 7350. https://doi.org/10.3390/ijms22147350

Published

02-29-2024

How to Cite

Nanavati, K. (2024). Understanding and Treating Epigenetic Drivers of Cancer. Journal of Student Research, 13(1). https://doi.org/10.47611/jsrhs.v13i1.6008

Issue

Section

HS Review Articles