Understanding and Treating Epigenetic Drivers of Cancer
DOI:
https://doi.org/10.47611/jsrhs.v13i1.6008Keywords:
cancer, genetics, epigenetics, drugsAbstract
Epigenetic modifications, primarily DNA methylation and histone deacetylation, are known to lead to certain cancers due to their effects on tumour suppressor genes and oncogenes. However, there have been limitations on how our understanding of these modifications can provide effective treatments and preventative measures for patients. This article summarises our current understanding of cancers affected by epigenetics, epigenetic therapies in the form of inhibitors, and the use of epigenetic factors as prognostic and predictive biomarkers for patients. Within the development of cancers caused by epigenetics, this article examines differences between sporadic and hereditary cases for colorectal, breast, and ovarian cancer. In terms of treatments, this article lists some of the most well-known DNA methylation and histone deacetylase inhibitors currently under clinical investigation and which cancers they have the potential to treat. Finally, this article explores the possible biomarkers for epigenetic cancers, considering cell-free DNA and microRNA. This article summarises that future studies should explore a variety of factors regarding the causes, treatments, and identification of epigenetic cancers to maximise patient care.
Downloads
References or Bibliography
Guerrero-Bosagna, C. (2016, June 27). What is epigenetics? - Carlos Guerrero-Bosagna [Video]. YouTube - TED-Ed. https://www.youtube.com/watch?v=_aAhcNjmvhc
Peterson, S., & Rapini, B. (2020, December 18). Epigenetics [Video]. YouTube. https://www.youtube.com/watch?v=MD3Fc0XOjWk
Centers for Disease Control and Prevention. (2023, May 3). Lynch syndrome. Centers for Disease Control and Prevention. https://www.cdc.gov/genomics/disease/colorectal_cancer/lynch.htm
Bhattacharya, P., & McHugh, T. W. (2023, February 14). Lynch syndrome - statpearls - NCBI bookshelf. National Library of Medicine. https://www.ncbi.nlm.nih.gov/books/NBK431096/
Hitchins, P. Megan (2010). Inheritance of Epigenetic Aberrations (Constitutional Epimutations) in Cancer Susceptibility. Science Direct, 70, 201-243. https://doi.org/10.1016/B978-0-12-380866-0.60008-3
Kwok, C. T., Vogelaar, I., van Zelst-Stams, W., Mensenkamp, A. R., Ligtenberg, M. J., Rapkins, R. W., ... & Spurdle, A. B. (2014). The MLH1 c.-27C> A and c. 85G> T variants are linked to dominantly inherited MLH1 epimutation and are borne on a European ancestral haplotype. European Journal of Human Genetics, 22(5), 617-624. doi: 10.1038/ejhg.2013.200
Hitchins, M. P., Wong, J. J., Suthers, G., Suter, C. M., Martin, D. I., Hawkins, N. J., & Ward, R. L. (2007). Inheritance of a cancer-associated MLH1 germ-line epimutation. The New England journal of medicine, 356(7), 697–705. https://doi.org/10.1056/NEJMoa064522
Gonzalo, V., Castellví–Bel, S., & Castells, A. (2007). MLH1 Germ-Line Epimutations: Is There Strong Evidence of Its Inheritance? Gastroenterology, 133(3), 1042–1044. https://doi.org/10.1053/j.gastro.2007.07.043
Boland, C. R., Goel, A., & Patel, S. G. (2020). The genetic and epigenetic landscape of early-onset colorectal cancer. Colorectal Cancer, CRC23. https://doi.org/10.2217/crc-2020-0005
Hansmann, T., Pliushch, G., Leubner, M., Kroll, P., Endt, D., Gehrig, A., ... & Haaf, T. (2012). Constitutive promoter methylation of BRCA1 and RAD51C in patients with familial ovarian cancer and early-onset sporadic breast cancer. Human Molecular Genetics, 21(21), 4669-4679. doi: 10.1093/hmg/dds308
Moufarrij Sara, et al. (2019). Epigenetic therapy for ovarian cancer: promise and progress. Clinical Epigenetics, 11(7). https://doi.org/10.1186/s13148-018-0602-0
Bitler, B. G., Aird, K. M., Garipov, A., Li, H., Amatangelo, M., Kossenkov, A. V., Schultz, D. C., Liu, Q., Shih, I.eM., Conejo-Garcia, J. R., Speicher, D. W., & Zhang, R. (2015). Synthetic lethality by targeting EZH2 methyltransferase activity in ARID1A-mutated cancers. Nature medicine, 21(3), 231–238. https://doi.org/10.1038/nm.3799
Roos, L., Spector, T. D., & Bell, C. G. (2014). Using epigenomic studies in monozygotic twins to improve our understanding of cancer. Epigenomics, 6(3), 299–309. https://doi.org/10.2217/epi.14.13
Yoo, C. B., & Jones, P. A. (2006). Epigenetic therapy of cancer: past, present and future. Nature Reviews Drug Discovery, 5(3), 37-50. doi: 10.1038/nrd1930.
Lakshmaiah, K. C.; Jacob, Linu A.; Aparna, S.; Lokanatha, D.; Saldanha, Smitha C.. (2014). Epigenetic therapy of cancer with histone deacetylase inhibitors. Journal of Cancer Research and Therapeutics, 10(3), 469-478. https://doi.org/10.4103/0973-1482.137937
Dueñas-González, A., Lizano, M., Candelaria, M., Cetina, L., Arce, C., & Cervera, E. (2005). Epigenetics of cervical cancer. An overview and therapeutic perspectives. Molecular Cancer, 4(1), 38. https://doi.org/10.1186/1476-4598-4-38
Du, L., Wang, D., Wei, X., Liu, C., Xiao, Z., Qian, W., Song, Y., & Hou, X. (2022). MS275 as Class I HDAC inhibitor displayed therapeutic potential on malignant ascites by iTRAQ-based quantitative proteomic analysis. BMC Gastroenterology, 22(1). https://doi.org/10.1186/s12876-022-02101-7
Zhao, Q., Fan, J., Hong, W., Li, L., & Wu, M. (2012, December 13). Inhibition of cancer cell proliferation by 5-fluoro-2’-deoxycytidine, a DNA methylation inhibitor, through activation of DNA damage response pathway. Springerplus. https://springerplus.springeropen.com/articles/10.1186/2193-1801-1-65#:~:text=Multiple%20epigenetic%20changes%2C%20including%20alterations,in%20phase%20II%20clinical%20trial.
Lin, X., Asgari, K., Putzi, M. J., Gage, W. R., Yu, X., Cornblatt, B. S., Kumar, A., Piantadosi, S., DeWeese, T. L., De Marzo, A. M., & Nelson, W. G. (2001). Reversal of GSTP1 CpG island hypermethylation and reactivation of pi-class glutathione S-transferase (GSTP1) expression in human prostate cancer cells by treatment with procainamide. Cancer research, 61(24), 8611–8616.
Fang, M. Z., Wang, Y., Ai, N., Hou, Z., Sun, Y., Lu, H., Welsh, W., & Yang, C. S. (2003). Tea polyphenol (-)-epigallocatechin-3-gallate inhibits DNA methyltransferase and reactivates methylation-silenced genes in cancer cell lines. Cancer research, 63(22), 7563–7570.
Bao, Y., Xu, Q., Wang, L., Wei, Y., Hu, B., Wang, J., Liu, D., Zhao, L., & Jing, Y. (2021, January 5). Studying histone deacetylase inhibition and... - ACS publications. ACS Publications. https://pubs.acs.org/doi/10.1021/acsmedchemlett.0c00369
Ou, Y., Zhang, Q., Tang, Y., Lu, Z., Lu, X., Zhou, X., & Liu, C. (2018). DNA methylation enzyme inhibitor RG108 suppresses the radioresistance of esophageal cancer. Oncology reports, 39(3), 993–1002. https://doi.org/10.3892/or.2018.6210
Lee, P., Murphy, B., Miller, R., Menon, V., Banik, N. L., Giglio, P., Lindhorst, S. M., Varma, A. K., Vandergrift, W. A., 3rd, Patel, S. J., & Das, A. (2015). Mechanisms and clinical significance of histone deacetylase inhibitors: epigenetic glioblastoma therapy. Anticancer research, 35(2), 615–625.
Faghihloo, E., Araei, Y., Mohammadi, M. et al. (2016). The effect of oxamflatin on the E-cadherin expression in gastric cancer cell line. Cancer Gene Ther, 23, 396–399. https://doi.org/10.1038/cgt.2016.52
Savickiene, J., Treigyte, G., Valiuliene, G., Stirblyte, I., & Navakauskiene, R. (2014). Epigenetic and molecular mechanisms underlying the antileukemic activity of the histone deacetylase inhibitor belinostat in human acute promyelocytic leukemia cells. Anti-cancer drugs, 25(8), 938–949. https://doi.org/10.1097/CAD.0000000000000122
Sahafnejad, Z., Ramazi, S., & Allahverdi, A. (2023). An Update of Epigenetic Drugs for the Treatment of Cancers and Brain Diseases: A Comprehensive Review. Genes, 14(4), 873. https://doi.org/10.3390/genes14040873
Yao, R., Han, D., Sun, X., Xie , Y., Wu , Q., Fu, C., Yao, Y., Li , H., Li , Z., & Xu, K. (2018, January 2). Scriptaid inhibits cell survival, cell cycle, and promotes apoptosis in multiple myeloma via epigenetic regulation of P21. Experimental Hematology. https://www.sciencedirect.com/science/article/pii/S0301472X17309116#:~:text=Pages%2063%2D72-,Scriptaid%20inhibits%20cell%20survival%2C%20cell%20cycle%2C%20and%20promotes%20apoptosis%20in,via%20epigenetic%20regulation%20of%20p21
Zhang, H., Zhao, X., Liu, H., Jin, H., & Ji, Y. (2019). Trichostatin A inhibits proliferation of PC3 prostate cancer cells by disrupting the EGFR pathway. Oncology letters, 18(1), 687–693. https://doi.org/10.3892/ol.2019.10384
Giles, F., Fischer, T., Cortes, J., Garcia-Manero, G., Beck, J., Ravandi, F., Masson, E., Rae, P., Laird, G., Sharma, S., Kantarjian, H., Dugan, M., Albitar, M., & Bhalla, K. (2006). A phase I study of intravenous LBH589, a novel cinnamic hydroxamic acid analogue histone deacetylase inhibitor, in patients with refractory hematologic malignancies. Clinical cancer research: an official journal of the American Association for Cancer Research, 12(15), 4628–4635. https://doi.org/10.1158/1078-0432.CCR-06-0511
Conte, M., Fontana, E., Nebbioso, A., & Altucci, L. (2020). Marine-Derived Secondary Metabolites as Promising Epigenetic Bio-Compounds for Anticancer Therapy. Marine drugs, 19(1), 15. https://doi.org/10.3390/md19010015
Kamińska, K., Nalejska, E., Kubiak, M., Wojtysiak, J., Żołna, Ł., Kowalewski, J., & Lewandowska, M. A. (2019). Prognostic and predictive epigenetic biomarkers in oncology. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6394434/
Li, W., Guo, L., Tang, W. et al. (2021). Identification of DNA methylation biomarkers for risk of liver metastasis in early-stage colorectal cancer. Clinical Epigenet, 13, 126. https://doi.org/10.1186/s13148-021-01108-3
Brown, L. J., Achinger-Kawecka, J., Portman, N., Clark, S., Stirzaker, C., & Lim, E. (2022). Epigenetic Therapies and Biomarkers in Breast Cancer. Cancers, 14(3), 474. https://doi.org/10.3390/cancers14030474
Koval, A. P., Blagodatskikh, K. A., Kushlinskii, N. E., & Shcherbo, D. S. (2021, April 12). The detection of cancer epigenetic traces in cell-free DNA. Frontiers. https://www.frontiersin.org/articles/10.3389/fonc.2021.662094/full
Mohd Khair, S. Z. N., Abd Radzak, S. M., & Mohamed Yusoff, A. A. (2021, July 15). The uprising of mitochondrial DNA biomarker in cancer. Disease markers. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8302403/
Dong, Y., He, Q., Chen, X., Yang, F., He, L., & Zheng, Y. (2023, June 5). Extrachromosomal DNA (ecdna) in cancer: Mechanisms, functions, and clinical implications. Frontiers. https://www.frontiersin.org/journals/oncology/articles/10.3389/fonc.2023.1194405/full
Lau, B. T., Almeda, A., Schauer, M., McNamara, M., Bai, X., Meng, Q., Partha, M., Grimes, S. M., Lee, H., Heestand, G. M., & Ji, H. P. (2023, May 3). Single-molecule methylation profiles of cell-free DNA in cancer with Nanopore sequencing - genome medicine. BioMed Central. https://genomemedicine.biomedcentral.com/articles/10.1186/s13073-023-01178-3
Filipów, S., & Łaczmański, Ł. (2019). Blood Circulating miRNAs as Cancer Biomarkers for Diagnosis and Surgical Treatment Response. Frontiers in genetics, 10, 169. https://doi.org/10.3389/fgene.2019.00169
Pajares, M. J., Alemany-Cosme, E., Goñi, S., Bandres, E., Palanca-Ballester, C., & Sandoval, J. (2021). Epigenetic Regulation of microRNAs in Cancer: Shortening the Distance from Bench to Bedside. International journal of molecular sciences, 22(14), 7350. https://doi.org/10.3390/ijms22147350
Published
How to Cite
Issue
Section
Copyright (c) 2024 Keya Nanavati
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.