Microbial Engineering for PHB Production and E-Waste Biomining: A Sustainable Approach
DOI:
https://doi.org/10.47611/jsrhs.v13i1.6006Keywords:
Microbial Engineering, PHB Production, E-Waste Biomining, SustainabilityAbstract
This review delves into the potential of microbial biotechnologies in tackling two major environmental issues that face modern society: the manufacturing of petroleum-based plastics and the management of electronic waste (E-waste). E-waste contains valuable and critical metals that are conventionally extracted using methods that pose a threat to the environment (Gopikrishnan et al., 2020). Through the novel process of biomining, microorganisms have been found to offer a more sustainable way of extracting these metals. Similarly, the production of ecologically-damaging petroleum-based plastics can be mitigated by biologically modifying microorganisms that are naturally capable of producing bioplastics, like polyhydroxybutyrate (PHB), intracellularly (Tsang et al., 2019). This study addresses the current state of these microbial technologies as well as their drawbacks, ultimately culminating in a set of solutions that provide ways for these processes to be scaled up to an industrial level.
Downloads
References or Bibliography
References
Arya, S., & Kumar, S. (2020). Bioleaching: Urban mining option to curb the menace of E-waste challenge. Bioengineered, 11(1), 640–660. https://doi.org/10.1080/21655979.2020.1775988
Bindschedler, S., Vu Bouquet, T. Q. T., Job, D., Joseph, E., & Junier, P. (2017). Fungal Biorecovery of Gold From E-waste. Advances in Applied Microbiology, 99, 53–81. https://doi.org/10.1016/bs.aambs.2017.02.002
Biswal, B. K., & Balasubramanian, R. (2023). Recovery of valuable metals from spent lithium-ion batteries using microbial agents for bioleaching: A review. Frontiers in Microbiology, 14, 1197081. https://doi.org/10.3389/fmicb.2023.1197081
Brewer, A., Dohnalkova, A., Shutthanandan, V., Kovarik, L., Chang, E., Sawvel, A. M., Mason, H. E., Reed, D., Ye, C., Hynes, W. F., Lammers, L. N., Park, D. M., & Jiao, Y. (2019). Microbe Encapsulation for Selective Rare-Earth Recovery from Electronic Waste Leachates. Environmental Science & Technology, 53(23), 13888–13897. https://doi.org/10.1021/acs.est.9b04608
Corti, C. W., & Holliday, R. J. (2004). Commercial aspects of gold applications: From materials science to chemical science. Gold Bulletin, 37(1), 20–26. https://doi.org/10.1007/BF03215513
Czerniecka-Kubicka, A., Frącz, W., Jasiorski, M., Błażejewski, W., Pilch-Pitera, B., Pyda, M., & Zarzyka, I. (2017). Thermal properties of poly(3-hydroxybutyrate) modified by nanoclay. Journal of Thermal Analysis and Calorimetry, 128(3), 1513–1526. https://doi.org/10.1007/s10973-016-6039-9
Han, P., Teo, W. Z., & Yew, W. S. (2022). Biologically engineered microbes for bioremediation of electronic waste: Wayposts, challenges and future directions. Engineering Biology, 6(1), 23–34. https://doi.org/10.1049/enb2.12020
Holmes, P. A. (1985). Applications of PHB - a microbially produced biodegradable thermoplastic. Physics in Technology, 16(1), 32–36. https://doi.org/10.1088/0305-4624/16/1/305
Johnson, D. B. (2014). Biomining-biotechnologies for extracting and recovering metals from ores and waste materials. Current Opinion in Biotechnology, 30, 24–31. https://doi.org/10.1016/j.copbio.2014.04.008
Kim, S., Jang, Y. J., Gong, G., Lee, S.-M., Um, Y., Kim, K. H., & Ko, J. K. (2022). Engineering Cupriavidus necator H16 for enhanced lithoautotrophic poly(3-hydroxybutyrate) production from CO2. Microbial Cell Factories, 21(1), 231. https://doi.org/10.1186/s12934-022-01962-7
Koch, M., & Forchhammer, K. (2021). Polyhydroxybutyrate: A Useful Product of Chlorotic Cyanobacteria. Microbial Physiology, 31(2), 67–77. https://doi.org/10.1159/000515617
Mokhtari-Hosseini, Z. B., Vasheghani-Farahani, E., Heidarzadeh-Vazifekhoran, A., Shojaosadati, S. A., Karimzadeh, R., & Khosravi Darani, K. (2009). Statistical media optimization for growth and PHB production from methanol by a methylotrophic bacterium. Bioresource Technology, 100(8), 2436–2443. https://doi.org/10.1016/j.biortech.2008.11.024
Narayanasamy, M., Dhanasekaran, D., & Thajuddin, N. (2022). Frankia consortium extracts high-value metals from e-waste. Environmental Technology & Innovation, 28, 102564. https://doi.org/10.1016/j.eti.2022.102564
Naser, A. Z., Deiab, I., & Darras, B. M. (2021). Poly(lactic acid) (PLA) and polyhydroxyalkanoates (PHAs), green alternatives to petroleum-based plastics: A review. RSC Advances, 11(28), 17151–17196. https://doi.org/10.1039/D1RA02390J
Rahman, A., Linton, E., Hatch, A. D., Sims, R. C., & Miller, C. D. (2013). Secretion of polyhydroxybutyrate in Escherichia coli using a synthetic biological engineering approach. Journal of Biological Engineering, 7(1), 24. https://doi.org/10.1186/1754-1611-7-24
Ramachander, T. V. N., Rohini, D., Belhekar, A., & Rawal, S. K. (2002). Synthesis of PHB by recombinant E. coli harboring an approximately 5 kb genomic DNA fragment from Streptomyces aureofaciens NRRL 2209. International Journal of Biological Macromolecules, 31(1–3), 63–69. https://doi.org/10.1016/s0141-8130(02)00068-5
Rao, M. D., Singh, K. K., Morrison, C. A., & Love, J. B. (2020). Challenges and opportunities in the recovery of gold from electronic waste. RSC Advances, 10(8), 4300–4309. https://doi.org/10.1039/c9ra07607g
Tsang, Y. F., Kumar, V., Samadar, P., Yang, Y., Lee, J., Ok, Y. S., Song, H., Kim, K.-H., Kwon, E. E., & Jeon, Y. J. (2019). Production of bioplastic through food waste valorization. Environment International, 127, 625–644. https://doi.org/10.1016/j.envint.2019.03.076
Valappil, S. P., Misra, S. K., Boccaccini, A. R., Keshavarz, T., Bucke, C., & Roy, I. (2007). Large-scale production and efficient recovery of PHB with desirable material properties, from the newly characterised Bacillus cereus SPV. Journal of Biotechnology, 132(3), 251–258. https://doi.org/10.1016/j.jbiotec.2007.03.013
V. Gopikrishnan, A. Vignesh, M. Radhakrishnan, Jerrine Joseph, T. Shanmugasundaram, Mukesh Doble, R. Balagurunathan. (2020). Chapter 10—Microbial leaching of heavy metals from e-waste: Opportunities and challenges. In Biovalorisation of Wastes to Renewable Chemicals and Biofuels (pp. 189–216). https://doi.org/10.1016/B978-0-12-817951-2.00010-9
Yashavanth P R., Meenakshi Das, Soumen K. Maiti. (2021). Recent progress and challenges in cyanobacterial autotrophic production of polyhydroxybutyrate (PHB), a bioplastic. Journal of Environmental Chemical Engineering, 9(4). https://doi.org/10.1016/j.jece.2021.105379
York, G. M., Stubbe, J., & Sinskey, A. J. (2001). New insight into the role of the PhaP phasin of Ralstonia eutropha in promoting synthesis of polyhydroxybutyrate. Journal of Bacteriology, 183(7), 2394–2397. https://doi.org/10.1128/JB.183.7.2394-2397.2001
Zhuang, W.-Q., Fitts, J. P., Ajo-Franklin, C. M., Maes, S., Alvarez-Cohen, L., & Hennebel, T. (2015). Recovery of critical metals using biometallurgy. Current Opinion in Biotechnology, 33, 327–335. https://doi.org/10.1016/j.copbio.2015.03.019
Published
How to Cite
Issue
Section
Copyright (c) 2024 Kush Nagrani; Alexa Zytnick
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.