Microbial Engineering for PHB Production and E-Waste Biomining: A Sustainable Approach

Authors

  • Kush Nagrani Adlai E. Stevenson High School
  • Alexa Zytnick University of California, Berkeley

DOI:

https://doi.org/10.47611/jsrhs.v13i1.6006

Keywords:

Microbial Engineering, PHB Production, E-Waste Biomining, Sustainability

Abstract

This review delves into the potential of microbial biotechnologies in tackling two major environmental issues that face modern society: the manufacturing of petroleum-based plastics and the management of electronic waste (E-waste). E-waste contains valuable and critical metals that are conventionally extracted using methods that pose a threat to the environment (Gopikrishnan et al., 2020). Through the novel process of biomining, microorganisms have been found to offer a more sustainable way of extracting these metals. Similarly, the production of ecologically-damaging petroleum-based plastics can be mitigated by biologically modifying microorganisms that are naturally capable of producing bioplastics, like polyhydroxybutyrate (PHB), intracellularly (Tsang et al., 2019). This study addresses the current state of these microbial technologies as well as their drawbacks, ultimately culminating in a set of solutions that provide ways for these processes to be scaled up to an industrial level.

Downloads

Download data is not yet available.

References or Bibliography

References

Arya, S., & Kumar, S. (2020). Bioleaching: Urban mining option to curb the menace of E-waste challenge. Bioengineered, 11(1), 640–660. https://doi.org/10.1080/21655979.2020.1775988

Bindschedler, S., Vu Bouquet, T. Q. T., Job, D., Joseph, E., & Junier, P. (2017). Fungal Biorecovery of Gold From E-waste. Advances in Applied Microbiology, 99, 53–81. https://doi.org/10.1016/bs.aambs.2017.02.002

Biswal, B. K., & Balasubramanian, R. (2023). Recovery of valuable metals from spent lithium-ion batteries using microbial agents for bioleaching: A review. Frontiers in Microbiology, 14, 1197081. https://doi.org/10.3389/fmicb.2023.1197081

Brewer, A., Dohnalkova, A., Shutthanandan, V., Kovarik, L., Chang, E., Sawvel, A. M., Mason, H. E., Reed, D., Ye, C., Hynes, W. F., Lammers, L. N., Park, D. M., & Jiao, Y. (2019). Microbe Encapsulation for Selective Rare-Earth Recovery from Electronic Waste Leachates. Environmental Science & Technology, 53(23), 13888–13897. https://doi.org/10.1021/acs.est.9b04608

Corti, C. W., & Holliday, R. J. (2004). Commercial aspects of gold applications: From materials science to chemical science. Gold Bulletin, 37(1), 20–26. https://doi.org/10.1007/BF03215513

Czerniecka-Kubicka, A., Frącz, W., Jasiorski, M., Błażejewski, W., Pilch-Pitera, B., Pyda, M., & Zarzyka, I. (2017). Thermal properties of poly(3-hydroxybutyrate) modified by nanoclay. Journal of Thermal Analysis and Calorimetry, 128(3), 1513–1526. https://doi.org/10.1007/s10973-016-6039-9

Han, P., Teo, W. Z., & Yew, W. S. (2022). Biologically engineered microbes for bioremediation of electronic waste: Wayposts, challenges and future directions. Engineering Biology, 6(1), 23–34. https://doi.org/10.1049/enb2.12020

Holmes, P. A. (1985). Applications of PHB - a microbially produced biodegradable thermoplastic. Physics in Technology, 16(1), 32–36. https://doi.org/10.1088/0305-4624/16/1/305

Johnson, D. B. (2014). Biomining-biotechnologies for extracting and recovering metals from ores and waste materials. Current Opinion in Biotechnology, 30, 24–31. https://doi.org/10.1016/j.copbio.2014.04.008

Kim, S., Jang, Y. J., Gong, G., Lee, S.-M., Um, Y., Kim, K. H., & Ko, J. K. (2022). Engineering Cupriavidus necator H16 for enhanced lithoautotrophic poly(3-hydroxybutyrate) production from CO2. Microbial Cell Factories, 21(1), 231. https://doi.org/10.1186/s12934-022-01962-7

Koch, M., & Forchhammer, K. (2021). Polyhydroxybutyrate: A Useful Product of Chlorotic Cyanobacteria. Microbial Physiology, 31(2), 67–77. https://doi.org/10.1159/000515617

Mokhtari-Hosseini, Z. B., Vasheghani-Farahani, E., Heidarzadeh-Vazifekhoran, A., Shojaosadati, S. A., Karimzadeh, R., & Khosravi Darani, K. (2009). Statistical media optimization for growth and PHB production from methanol by a methylotrophic bacterium. Bioresource Technology, 100(8), 2436–2443. https://doi.org/10.1016/j.biortech.2008.11.024

Narayanasamy, M., Dhanasekaran, D., & Thajuddin, N. (2022). Frankia consortium extracts high-value metals from e-waste. Environmental Technology & Innovation, 28, 102564. https://doi.org/10.1016/j.eti.2022.102564

Naser, A. Z., Deiab, I., & Darras, B. M. (2021). Poly(lactic acid) (PLA) and polyhydroxyalkanoates (PHAs), green alternatives to petroleum-based plastics: A review. RSC Advances, 11(28), 17151–17196. https://doi.org/10.1039/D1RA02390J

Rahman, A., Linton, E., Hatch, A. D., Sims, R. C., & Miller, C. D. (2013). Secretion of polyhydroxybutyrate in Escherichia coli using a synthetic biological engineering approach. Journal of Biological Engineering, 7(1), 24. https://doi.org/10.1186/1754-1611-7-24

Ramachander, T. V. N., Rohini, D., Belhekar, A., & Rawal, S. K. (2002). Synthesis of PHB by recombinant E. coli harboring an approximately 5 kb genomic DNA fragment from Streptomyces aureofaciens NRRL 2209. International Journal of Biological Macromolecules, 31(1–3), 63–69. https://doi.org/10.1016/s0141-8130(02)00068-5

Rao, M. D., Singh, K. K., Morrison, C. A., & Love, J. B. (2020). Challenges and opportunities in the recovery of gold from electronic waste. RSC Advances, 10(8), 4300–4309. https://doi.org/10.1039/c9ra07607g

Tsang, Y. F., Kumar, V., Samadar, P., Yang, Y., Lee, J., Ok, Y. S., Song, H., Kim, K.-H., Kwon, E. E., & Jeon, Y. J. (2019). Production of bioplastic through food waste valorization. Environment International, 127, 625–644. https://doi.org/10.1016/j.envint.2019.03.076

Valappil, S. P., Misra, S. K., Boccaccini, A. R., Keshavarz, T., Bucke, C., & Roy, I. (2007). Large-scale production and efficient recovery of PHB with desirable material properties, from the newly characterised Bacillus cereus SPV. Journal of Biotechnology, 132(3), 251–258. https://doi.org/10.1016/j.jbiotec.2007.03.013

V. Gopikrishnan, A. Vignesh, M. Radhakrishnan, Jerrine Joseph, T. Shanmugasundaram, Mukesh Doble, R. Balagurunathan. (2020). Chapter 10—Microbial leaching of heavy metals from e-waste: Opportunities and challenges. In Biovalorisation of Wastes to Renewable Chemicals and Biofuels (pp. 189–216). https://doi.org/10.1016/B978-0-12-817951-2.00010-9

Yashavanth P R., Meenakshi Das, Soumen K. Maiti. (2021). Recent progress and challenges in cyanobacterial autotrophic production of polyhydroxybutyrate (PHB), a bioplastic. Journal of Environmental Chemical Engineering, 9(4). https://doi.org/10.1016/j.jece.2021.105379

York, G. M., Stubbe, J., & Sinskey, A. J. (2001). New insight into the role of the PhaP phasin of Ralstonia eutropha in promoting synthesis of polyhydroxybutyrate. Journal of Bacteriology, 183(7), 2394–2397. https://doi.org/10.1128/JB.183.7.2394-2397.2001

Zhuang, W.-Q., Fitts, J. P., Ajo-Franklin, C. M., Maes, S., Alvarez-Cohen, L., & Hennebel, T. (2015). Recovery of critical metals using biometallurgy. Current Opinion in Biotechnology, 33, 327–335. https://doi.org/10.1016/j.copbio.2015.03.019

Published

02-28-2024

How to Cite

Nagrani, K., & Zytnick, A. (2024). Microbial Engineering for PHB Production and E-Waste Biomining: A Sustainable Approach. Journal of Student Research, 13(1). https://doi.org/10.47611/jsrhs.v13i1.6006

Issue

Section

HS Review Articles