Novel Immunotherapies for the treatment of Acute Lymphoblastic Leukemia

Authors

  • Isabella Barros Seattle Preparatory School
  • Haley Dame

DOI:

https://doi.org/10.47611/jsrhs.v13i1.5993

Keywords:

CAR T-cell, Immunotherapy, Immune Checkpoint Inhibitors, ALL, Acute Lymphoblastic Leukemia, PD-1, PD-L1, Hematological Malignancies

Abstract

CAR T-cell therapy and immune checkpoint inhibitors are groundbreaking immunotherapies with great promise for cancer treatment. CAR T-cell therapy uses engineered T-cells from the patient to help the immune system better identify and eliminate cancer cells. Immune checkpoint inhibitors for PD-1 and PD-L1 use monoclonal antibodies to block the PD-1/PD-L1 interaction that would otherwise allow cancer cells to go unnoticed by the immune system, continuing the growth of the cancer. For acute lymphoblastic leukemia (ALL), CAR T-cell therapy has led to favorable responses, with the potential to induce complete remission. Conversely, the PD-1 and PD-L1 immune checkpoint inhibitors have not shown a significant effect on the disease. Though CAR T-cell therapy is an effective treatment for ALL, its accessibility is impacted by cost and lack of availability. With the initiation of further clinical trials, commercialized CAR T-cell therapy could become more widely available, thus lowering the cost of treatment, and increasing accessibility. 

Downloads

Download data is not yet available.

References or Bibliography

Abou-El-Enein, M., & Gauthier, J. (2022). The value of CAR-T-cell immunotherapy in cancer. In Springer

eBooks (pp. 231–234). https://doi.org/10.1007/978-3-030-94353-0_46

Abramson JS, Palomba ML, Gordon LI, Lunning MA, Wang M, Arnason J, Mehta A, Purev E, Maloney DG, Andreadis C, Sehgal A, Solomon SR, Ghosh N, Albertson TM, Garcia J, Kostic A, Mallaney M, Ogasawara K, Newhall K, Kim Y, Li D, Siddiqi T. Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): a multicentre seamless design study. Lancet. 2020 Sep 19;396(10254):839-852. doi: 10.1016/S0140-6736(20)31366-0. Epub 2020 Sep 1. PMID: 32888407.

Acute lymphoblastic leukemia (ALL) - UF Health. (n.d.). https://ufhealth.org/conditions-and-treatments/acute-lymphoblastic-leukemia-all

Adult acute lymphoblastic leukemia treatment. (2023, November 17). National Cancer Institute. https://www.cancer.gov/types/leukemia/patient/adult-all-treatment-pdq

Ali, S., Kjeken, R., Niederlaender, C., Markey, G., Saunders, T. S., Opsata, M., Moltu, K., Bremnes, B., Grønevik, E., Muusse, M., Håkonsen, G. D., Skibeli, V., Kalland, M. E., Wang, I., Buajordet, I., Urbaniak, A., Johnston, J., Rantell, K., Kerwash, E., Schuessler-Lenz, M., … Pignatti, F. (2020). The European Medicines Agency Review of Kymriah (Tisagenlecleucel) for the Treatment of Acute Lymphoblastic Leukemia and Diffuse Large B-Cell Lymphoma. The oncologist, 25(2), e321–e327. https://doi.org/10.1634/theoncologist.2019-0233

Andrews A. (2015). Treating with Checkpoint Inhibitors-Figure $1 Million per Patient. American health & drug benefits, 8(Spec Issue), 9.

Financial Considerations for CAR T-cell therapy patients | BMT infonet. (n.d.). https://www.bmtinfonet.org/transplant-article/financial-considerations-CAR-T-cell-therapy

Guercio, M., Orlando, D., Di Cecca, S., Sinibaldi, M., Boffa, I., Caruso, S., Abbaszadeh, Z., Camera, A., Cembrola, B., Bovetti, K., Manni, S., Caruana, I., Ciccone, R., Del Bufalo, F., Merli, P., Vinti, L., Girardi, K., Ruggeri, A., De Stefanis, C., . . . De Angelis, B. (2020). CD28.OX40 co-stimulatory combination is associated with long in vivo persistence and high activity of CAR.CD30 T-cells. Haematologica, 106(4), 987–999. https://doi.org/10.3324/haematol.2019.231183

Gunturu, K. S., Pham, T. T., Shambhu, S., Fisch, M. J., Barron, J. J., & Debono, D. (2022). Immune checkpoint inhibitors: immune-related adverse events, healthcare utilization, and costs among commercial and Medicare Advantage patients. Supportive care in cancer : official journal of the Multinational Association of Supportive Care in Cancer, 30(5), 4019–4026. https://doi.org/10.1007/s00520-022-06826-9

Haslauer, T., Greil, R., Zaborsky, N., & Geisberger, R. (2021). CAR T-Cell Therapy in Hematological Malignancies. International journal of molecular sciences, 22(16), 8996. https://doi.org/10.3390/ijms22168996

Https://www.lls.org/leukemia/acute-lymphoblastic-leukemia/diagnosis/all-subtypes. (n.d.a). https://www.lls.org/leukemia/acute-lymphoblastic-leukemia/diagnosis/all-subtypes

Https://www.lls.org/leukemia/acute-lymphoblastic-leukemia/diagnosis. (n.d.b). https://www.lls.org/leukemia/acute-lymphoblastic-leukemia/diagnosis#:~:text=People%20with%20acute%20lymphoblastic%20leukemia,red%20blood%20cells%20and%20platelets.

Immune checkpoint inhibitors. (2022, April 7). National Cancer Institute. https://www.cancer.gov/about-cancer/treatment/types/immunotherapy/checkpoint-inhibitors

Immune checkpoint inhibitors and their side effects. (n.d.). American Cancer Society. https://www.cancer.org/cancer/managing-cancer/treatment-types/immunotherapy/immune-checkpoint-inhibitors.html

Kim, S. K., & Cho, S. W. (2022). The Evasion Mechanisms of Cancer Immunity and Drug Intervention in the Tumor Microenvironment. Frontiers in pharmacology, 13, 868695. https://doi.org/10.3389/fphar.2022.868695

Low White Blood Cell Count | Its Impact On Your Health | LLS. (n.d.c). https://www.lls.org/treatment/lab-and-imaging-tests/understanding-blood-counts

Martino, M., Alati, C., Canale, F. A., Musuraca, G., Martinelli, G., & Cerchione, C. (2021). A Review of Clinical Outcomes of CAR T-Cell Therapies for B-Acute Lymphoblastic Leukemia. International journal of molecular sciences, 22(4), 2150. https://doi.org/10.3390/ijms22042150

Meng X, Jing R, Qian L, Zhou C, Sun J. Engineering Cytoplasmic Signaling of CD28ζ CARs for Improved Therapeutic Functions. Front Immunol. 2020 Jun 19;11:1046. doi: 10.3389/fimmu.2020.01046. PMID: 32636832; PMCID: PMC7318076.

Miller KD, Nogueira L, Devasia T, Mariotto AB, Yabroff KR, Jemal A, Kramer J, Siegel RL. Cancer treatment and survivorship statistics, 2022. CA Cancer J Clin. 2022 Sep;72(5):409-436. doi: 10.3322/caac.21731. Epub 2022 Jun 23. PMID: 35736631

Munshi NC, Anderson LD Jr, Shah N, Madduri D, Berdeja J, Lonial S, Raje N, Lin Y, Siegel D, Oriol A, Moreau P, Yakoub-Agha I, Delforge M, Cavo M, Einsele H, Goldschmidt H, Weisel K, Rambaldi A, Reece D, Petrocca F, Massaro M, Connarn JN, Kaiser S, Patel P, Huang L, Campbell TB, Hege K, San-Miguel J. Idecabtagene Vicleucel in Relapsed and Refractory Multiple Myeloma. N Engl J Med. 2021 Feb 25;384(8):705-716. doi: 10.1056/NEJMoa2024850. PMID: 33626253.

NCI Dictionary of Cancer Terms. (n.d.). National Cancer Institute. https://www.cancer.gov/publications/dictionaries/cancer-terms/def/tumor-heterogeneity

Ok, C. Y., & Young, K. H. (2017). Checkpoint inhibitors in hematological malignancies. Journal of Hematology & Oncology, 10(1). https://doi.org/10.1186/s13045-017-0474-3

Office of the Commissioner. (2017). FDA approval brings first gene therapy to the United States. U.S. Food And Drug Administration. https://www.fda.gov/news-events/press-announcements/fda-approval-brings-first-gene-therapy-united-states

Patel, J., Gao, X., & Wang, H. (2023). An Update on Clinical Trials and Potential Therapeutic Strategies in T-Cell Acute Lymphoblastic Leukemia. International journal of molecular sciences, 24(8), 7201. https://doi.org/10.3390/ijms24087201

Research, C. F. D. E. A. (2022). FDA D.I.S.C.O. Burst Edition: FDA approval of CARVYKTI (ciltacabtagene autoleucel) for the treatment of adult patients with relapsed or refractory multiple myeloma after four or more prior lines of therapy, including a proteasome inhibitor, an immunomodulatory agent, and an anti-CD38 monoclonal antibody. U.S. Food And Drug Administration. https://www.fda.gov/drugs/resources-information-approved-drugs/fda-disco-burst-edition-fda-approval-carvykti-ciltacabtagene-autoleucel-treatment-adult-patients#:~:text=On%20February%2028%2C%202022%2C%20the,an%20anti%2DCD38%20monoclonal%20antibody.

Subklewe, M., Von Bergwelt-Baildon, M., & Humpe, A. (2019). Chimeric antigen receptor T cells: A race to revolutionize cancer therapy. Transfusion Medicine and Hemotherapy, 46(1), 15–24. https://doi.org/10.1159/000496870

Typical treatment of acute lymphocytic leukemia (ALL). (n.d.). American Cancer Society. https://www.cancer.org/cancer/types/acute-lymphocytic-leukemia/treating/typical-treatment.html#:~:text=at%20this%20time.NAT,Response%20rates%20to%20ALL%20treatment,seen%20in%20their%20bone%20marrow.

Yang, K., Xu, J., Liu, Q., Li, J., & Xi, Y. (2019). Expression and significance of CD47, PD1 and PDL1 in T-cell acute lymphoblastic lymphoma/leukemia. Pathology, research and practice, 215(2), 265–271. https://doi.org/10.1016/j.prp.2018.10.021

Yang, Y. H., Liu, J. W., Lu, C., & Wei, J. F. (2022). CAR-T Cell Therapy for Breast Cancer: From Basic Research to Clinical Application. International journal of biological sciences, 18(6), 2609–2626. https://doi.org/10.7150/ijbs.70120

Published

02-28-2024

How to Cite

Barros, I., & Dame, H. (2024). Novel Immunotherapies for the treatment of Acute Lymphoblastic Leukemia. Journal of Student Research, 13(1). https://doi.org/10.47611/jsrhs.v13i1.5993

Issue

Section

HS Review Articles