Diagnosing Alzheimer’s Disease and Frontotemporal Dementia Using Machine Learning and EEG
DOI:
https://doi.org/10.47611/jsrhs.v12i4.5843Keywords:
Alzheimer's disease, Frontotemporal dementia, machine learning, EEGAbstract
Alzheimer’s disease (AD) and frontotemporal dementia (FTD) are types of neurodegenerative dementias characterized by progressive cognitive decline. Electroencephalography (EEG) signal analysis is becoming a promising, inexpensive method to early diagnose AD and FTD. Prior research has applied machine learning to classify AD and healthy patients (HC) based on EEG readings, but not distinguishing between AD, FTD, and healthy patients. In the present paper, power spectral features will be extracted from raw EEG recordings for random forest classifiers and artificial neural networks to differentiate among AD, FTD, and HC patients. The first two minutes of 88 EEG recordings were used from the 2nd Department of Neurology in Thessaloniki. The models achieved 96%, 92%, and 95% accuracy when dealing with binary classification problems (AD and HC, AD and FTD, HC and FTD) and 90.4% for all three classes. The accuracies improve upon the results of previous literature.
Downloads
References or Bibliography
References
Beber, B. C., & Chaves, M. L.f. (2013). Evaluation of patients with behavioral and cognitive complaints: Misdiagnosis in frontotemporal dementia and alzheimer's disease. Dementia & Neuropsychologia, 7(1), 60-65. https://doi.org/10.1590/s1980-57642013dn70100010
Belgiu, M., & Drăguţ, L. (2016). Random forest in remote sensing: A review of applications and future directions. ISPRS Journal of Photogrammetry and Remote Sensing, 114, 24-31. https://doi.org/10.1016/j.isprsjprs.2016.01.011
Caso, F., Cursi, M., Magnani, G., Fanelli, G., Falautano, M., Comi, G., Leocani, L., & Minicucci, F. (2012). Quantitative EEG and loreta: Valuable tools in discerning FTD from ad? Neurobiology of Aging, 33(10), 2343-2356. https://doi.org/10.1016/j.neurobiolaging.2011.12.011
Dauwels, J., Vialatte, F., & Cichocki, A. (2010). Diagnosis of alzheimers disease from EEG signals: Where are we standing? Current Alzheimer Research, 7(6), 487-505. https://doi.org/10.2174/156720510792231720
Dressler, O., Schneider, G., Stockmanns, G., & Kochs, E.f. (2004). Awareness and the EEG power spectrum: Analysis of frequencies. British Journal of Anaesthesia, 93(6), 806-809. https://doi.org/10.1093/bja/aeh270
Electroencephalogram (EEG). (n.d.). John Hopkins Medicine. Retrieved August 2, 2023, from https://www.hopkinsmedicine.org/health/treatment-tests-and-therapies/electroencephalogram-eeg
Elgandelwar, S. M., & Bairagi, V. K. (2021). Power analysis of EEG bands for diagnosis of alzheimer disease. International Journal of Medical Engineering and Informatics, 13(5), 376. https://doi.org/10.1504/ijmei.2021.117728
Fiscon, G., Weitschek, E., Cialini, A., Felici, G., Bertolazzi, P., De salvo, S., Bramanti, A., Bramanti, P., & De cola, M. C. (2018). Combining EEG signal processing with supervised methods for alzheimer's patients classification. BMC Medical Informatics and Decision Making, 18(1). https://doi.org/10.1186/s12911-018-0613-y
Frontotemporal dementia (FTD). (2023, January). Retrieved August 11, 2023, from https://www.alz.org/media/documents/alzheimers-dementia-frontotemporal-dementia-ts.pdf
Kulkarni, N., & Bairagi, V. (2018). EEG-Based diagnosis of alzheimer disease. Elsevier. https://doi.org/10.1016/c2017-0-00543-8
Leifer, B. P. (2003). Early diagnosis of alzheimer's disease: Clinical and economic benefits. Journal of the American Geriatrics Society, 51(5s2), S281-S288. https://doi.org/10.1046/j.1532-5415.5153.x
Lindau, M., Jelic, V., Johansson, S.-E., Andersen, C., Wahlund, L.-O., & Almkvist, O. (2003). Quantitative EEG abnormalities and cognitive dysfunctions in frontotemporal dementia and alzheimer's disease. Dementia and Geriatric Cognitive Disorders, 15(2), 106-114. https://doi.org/10.1159/000067973
Miltiadous, A., Tzimourta, K. D., Afrantou, T., Ioannidis, P., Grigoriadis, N., Tsalikakis, D. G., Angelidis, P., Tsipouras, M. G., Glavas, E., Giannakeas, N., & Tzallas, A. T. (2023). A dataset of scalp EEG recordings of alzheimer's disease, frontotemporal dementia and healthy subjects from routine EEG. Data, 8(6), 95. https://doi.org/10.3390/data8060095
Miltiadous, A., Tzimourta, K. D., Giannakeas, N., Tsipouras, M. G., Afrantou, T., Ioannidis, P., & Tzallas, A. T. (2021). Alzheimer's disease and frontotemporal dementia: A robust classification method of EEG signals and a comparison of validation methods. Diagnostics, 11(8), 1437. https://doi.org/10.3390/diagnostics11081437
Nardone, R., Sebastianelli, L., Versace, V., Saltuari, L., Lochner, P., Frey, V., Golaszewski, S., Brigo, F., Trinka, E., & Höller, Y. (2018). Usefulness of EEG techniques in distinguishing frontotemporal dementia from alzheimer's disease and other dementias. Disease Markers, 2018, 1-9. https://doi.org/10.1155/2018/6581490
Neutelings, I. (n.d.). Inserting ellipses between the last two rows: [Image]. TikZ. https://tikz.net/neural_networks/
Neylan, K. D., & Miller, B. L. (2023). New approaches to the treatment of frontotemporal dementia. Neurotherapeutics. https://doi.org/10.1007/s13311-023-01380-6
Nishida, K., Yoshimura, M., Isotani, T., Yoshida, T., Kitaura, Y., Saito, A., Mii, H., Kato, M., Takekita, Y., Suwa, A., Morita, S., & Kinoshita, T. (2011). Differences in quantitative EEG between frontotemporal dementia and alzheimer's disease as revealed by LORETA. Clinical Neurophysiology, 122(9), 1718-1725. https://doi.org/10.1016/j.clinph.2011.02.011
Noble, W. S. (2006). What is a support vector machine? Nature Biotechnology, 24(12), 1565-1567. https://doi.org/10.1038/nbt1206-1565
Perez-valero, E., Lopez-gordo, M. A., Morillas, C., Pelayo, F., & Vaquero-blasco, M. A. (2021). A review of automated techniques for assisting the early detection of alzheimer's disease with a focus on EEG. Journal of Alzheimer's Disease, 80(4), 1363-1376. https://doi.org/10.3233/jad-201455
Petersen, R. C. (2018). How early can we diagnose alzheimer disease (and is it sufficient)? Neurology, 91(9), 395-402. https://doi.org/10.1212/wnl.0000000000006088
Pirrone, D., Weitschek, E., Di paolo, P., De salvo, S., & De cola, M. C. (2022). EEG signal processing and supervised machine learning to early diagnose alzheimer's disease. Applied Sciences, 12(11), 5413. https://doi.org/10.3390/app12115413
Riebesell, J. (n.d.). Diagram of the random forest (RF) algorithm [Image]. TikZ. https://tikz.net/random-forest/
Safi, M. S., & Safi, S. M. M. (2021). Early detection of alzheimer's disease from EEG signals using hjorth parameters. Biomedical Signal Processing and Control, 65, 102338. https://doi.org/10.1016/j.bspc.2020.102338
Schrider, D. R., & Kern, A. D. (2018). Supervised machine learning for population genetics: A new paradigm. Trends in Genetics, 34(4), 301-312. https://doi.org/10.1016/j.tig.2017.12.005
Sharma, N., Kolekar, M.h., Jha, K., & Kumar, Y. (2019). EEG and cognitive biomarkers based mild cognitive impairment diagnosis. IRBM, 40(2), 113-121. https://doi.org/10.1016/j.irbm.2018.11.007
Subasi, A., & Erçelebi, E. (2005). Classification of EEG signals using neural network and logistic regression. Computer Methods and Programs in Biomedicine, 78(2), 87-99. https://doi.org/10.1016/j.cmpb.2004.10.009
Trambaiolli, L. R., Lorena, A. C., Fraga, F. J., Kanda, P. A.m., Anghinah, R., & Nitrini, R. (2011). Improving alzheimer's disease diagnosis with machine learning techniques. Clinical EEG and Neuroscience, 42(3), 160-165. https://doi.org/10.1177/155005941104200304
Alzheimer’s disease facts and figures. (2023). Alzheimer's & Dementia, 19(4), 1598-1695. https://doi.org/10.1002/alz.13016
What is dementia? (n.d.). Alzheimer's Association. Retrieved August 2, 2023, from https://www.alz.org/alzheimers-dementia/what-is-dementia
Xiong, Q., Zhang, X., Wang, W.-F., & Gu, Y. (2020). A parallel algorithm framework for feature extraction of EEG signals on MPI. Computational and Mathematical Methods in Medicine, 2020, 1-10. https://doi.org/10.1155/2020/9812019
Yener, G. G., Leuchter, A. F., Jenden, D., Read, S. L., Cummings, J. L., & Miller, B. L. (1996). Quantitative EEG in frontotemporal dementia. Clinical Electroencephalography, 27(2), 61-68. https://doi.org/10.1177/155005949602700204
Zhao, Y., & He, L. (2015). Deep learning in the EEG diagnosis of alzheimer's disease. Computer Vision - ACCV 2014 Workshops, 340-353. https://doi.org/10.1007/978-3-319-16628-5_25
Published
How to Cite
Issue
Section
Copyright (c) 2023 Andrew Yao; Guillermo Goldsztein, Alfred Renaud
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.