Diagnosing Alzheimer’s Disease and Frontotemporal Dementia Using Machine Learning and EEG

Authors

  • Andrew Yao Conestoga High School
  • Guillermo Goldsztein
  • Alfred Renaud

DOI:

https://doi.org/10.47611/jsrhs.v12i4.5843

Keywords:

Alzheimer's disease, Frontotemporal dementia, machine learning, EEG

Abstract

Alzheimer’s disease (AD) and frontotemporal dementia (FTD) are types of neurodegenerative dementias characterized by progressive cognitive decline. Electroencephalography (EEG) signal analysis is becoming a promising, inexpensive method to early diagnose AD and FTD. Prior research has applied machine learning to classify AD and healthy patients (HC) based on EEG readings, but not distinguishing between AD, FTD, and healthy patients. In the present paper, power spectral features will be extracted from raw EEG recordings for random forest classifiers and artificial neural networks to differentiate among AD, FTD, and HC patients. The first two minutes of 88 EEG recordings were used from the 2nd Department of Neurology in Thessaloniki. The models achieved 96%, 92%, and 95% accuracy when dealing with binary classification problems (AD and HC, AD and FTD, HC and FTD) and 90.4% for all three classes. The accuracies improve upon the results of previous literature.

Downloads

Download data is not yet available.

References or Bibliography

References

Beber, B. C., & Chaves, M. L.f. (2013). Evaluation of patients with behavioral and cognitive complaints: Misdiagnosis in frontotemporal dementia and alzheimer's disease. Dementia & Neuropsychologia, 7(1), 60-65. https://doi.org/10.1590/s1980-57642013dn70100010

Belgiu, M., & Drăguţ, L. (2016). Random forest in remote sensing: A review of applications and future directions. ISPRS Journal of Photogrammetry and Remote Sensing, 114, 24-31. https://doi.org/10.1016/j.isprsjprs.2016.01.011

Caso, F., Cursi, M., Magnani, G., Fanelli, G., Falautano, M., Comi, G., Leocani, L., & Minicucci, F. (2012). Quantitative EEG and loreta: Valuable tools in discerning FTD from ad? Neurobiology of Aging, 33(10), 2343-2356. https://doi.org/10.1016/j.neurobiolaging.2011.12.011

Dauwels, J., Vialatte, F., & Cichocki, A. (2010). Diagnosis of alzheimers disease from EEG signals: Where are we standing? Current Alzheimer Research, 7(6), 487-505. https://doi.org/10.2174/156720510792231720

Dressler, O., Schneider, G., Stockmanns, G., & Kochs, E.f. (2004). Awareness and the EEG power spectrum: Analysis of frequencies. British Journal of Anaesthesia, 93(6), 806-809. https://doi.org/10.1093/bja/aeh270

Electroencephalogram (EEG). (n.d.). John Hopkins Medicine. Retrieved August 2, 2023, from https://www.hopkinsmedicine.org/health/treatment-tests-and-therapies/electroencephalogram-eeg

Elgandelwar, S. M., & Bairagi, V. K. (2021). Power analysis of EEG bands for diagnosis of alzheimer disease. International Journal of Medical Engineering and Informatics, 13(5), 376. https://doi.org/10.1504/ijmei.2021.117728

Fiscon, G., Weitschek, E., Cialini, A., Felici, G., Bertolazzi, P., De salvo, S., Bramanti, A., Bramanti, P., & De cola, M. C. (2018). Combining EEG signal processing with supervised methods for alzheimer's patients classification. BMC Medical Informatics and Decision Making, 18(1). https://doi.org/10.1186/s12911-018-0613-y

Frontotemporal dementia (FTD). (2023, January). Retrieved August 11, 2023, from https://www.alz.org/media/documents/alzheimers-dementia-frontotemporal-dementia-ts.pdf

Kulkarni, N., & Bairagi, V. (2018). EEG-Based diagnosis of alzheimer disease. Elsevier. https://doi.org/10.1016/c2017-0-00543-8

Leifer, B. P. (2003). Early diagnosis of alzheimer's disease: Clinical and economic benefits. Journal of the American Geriatrics Society, 51(5s2), S281-S288. https://doi.org/10.1046/j.1532-5415.5153.x

Lindau, M., Jelic, V., Johansson, S.-E., Andersen, C., Wahlund, L.-O., & Almkvist, O. (2003). Quantitative EEG abnormalities and cognitive dysfunctions in frontotemporal dementia and alzheimer's disease. Dementia and Geriatric Cognitive Disorders, 15(2), 106-114. https://doi.org/10.1159/000067973

Miltiadous, A., Tzimourta, K. D., Afrantou, T., Ioannidis, P., Grigoriadis, N., Tsalikakis, D. G., Angelidis, P., Tsipouras, M. G., Glavas, E., Giannakeas, N., & Tzallas, A. T. (2023). A dataset of scalp EEG recordings of alzheimer's disease, frontotemporal dementia and healthy subjects from routine EEG. Data, 8(6), 95. https://doi.org/10.3390/data8060095

Miltiadous, A., Tzimourta, K. D., Giannakeas, N., Tsipouras, M. G., Afrantou, T., Ioannidis, P., & Tzallas, A. T. (2021). Alzheimer's disease and frontotemporal dementia: A robust classification method of EEG signals and a comparison of validation methods. Diagnostics, 11(8), 1437. https://doi.org/10.3390/diagnostics11081437

Nardone, R., Sebastianelli, L., Versace, V., Saltuari, L., Lochner, P., Frey, V., Golaszewski, S., Brigo, F., Trinka, E., & Höller, Y. (2018). Usefulness of EEG techniques in distinguishing frontotemporal dementia from alzheimer's disease and other dementias. Disease Markers, 2018, 1-9. https://doi.org/10.1155/2018/6581490

Neutelings, I. (n.d.). Inserting ellipses between the last two rows: [Image]. TikZ. https://tikz.net/neural_networks/

Neylan, K. D., & Miller, B. L. (2023). New approaches to the treatment of frontotemporal dementia. Neurotherapeutics. https://doi.org/10.1007/s13311-023-01380-6

Nishida, K., Yoshimura, M., Isotani, T., Yoshida, T., Kitaura, Y., Saito, A., Mii, H., Kato, M., Takekita, Y., Suwa, A., Morita, S., & Kinoshita, T. (2011). Differences in quantitative EEG between frontotemporal dementia and alzheimer's disease as revealed by LORETA. Clinical Neurophysiology, 122(9), 1718-1725. https://doi.org/10.1016/j.clinph.2011.02.011

Noble, W. S. (2006). What is a support vector machine? Nature Biotechnology, 24(12), 1565-1567. https://doi.org/10.1038/nbt1206-1565

Perez-valero, E., Lopez-gordo, M. A., Morillas, C., Pelayo, F., & Vaquero-blasco, M. A. (2021). A review of automated techniques for assisting the early detection of alzheimer's disease with a focus on EEG. Journal of Alzheimer's Disease, 80(4), 1363-1376. https://doi.org/10.3233/jad-201455

Petersen, R. C. (2018). How early can we diagnose alzheimer disease (and is it sufficient)? Neurology, 91(9), 395-402. https://doi.org/10.1212/wnl.0000000000006088

Pirrone, D., Weitschek, E., Di paolo, P., De salvo, S., & De cola, M. C. (2022). EEG signal processing and supervised machine learning to early diagnose alzheimer's disease. Applied Sciences, 12(11), 5413. https://doi.org/10.3390/app12115413

Riebesell, J. (n.d.). Diagram of the random forest (RF) algorithm [Image]. TikZ. https://tikz.net/random-forest/

Safi, M. S., & Safi, S. M. M. (2021). Early detection of alzheimer's disease from EEG signals using hjorth parameters. Biomedical Signal Processing and Control, 65, 102338. https://doi.org/10.1016/j.bspc.2020.102338

Schrider, D. R., & Kern, A. D. (2018). Supervised machine learning for population genetics: A new paradigm. Trends in Genetics, 34(4), 301-312. https://doi.org/10.1016/j.tig.2017.12.005

Sharma, N., Kolekar, M.h., Jha, K., & Kumar, Y. (2019). EEG and cognitive biomarkers based mild cognitive impairment diagnosis. IRBM, 40(2), 113-121. https://doi.org/10.1016/j.irbm.2018.11.007

Subasi, A., & Erçelebi, E. (2005). Classification of EEG signals using neural network and logistic regression. Computer Methods and Programs in Biomedicine, 78(2), 87-99. https://doi.org/10.1016/j.cmpb.2004.10.009

Trambaiolli, L. R., Lorena, A. C., Fraga, F. J., Kanda, P. A.m., Anghinah, R., & Nitrini, R. (2011). Improving alzheimer's disease diagnosis with machine learning techniques. Clinical EEG and Neuroscience, 42(3), 160-165. https://doi.org/10.1177/155005941104200304

Alzheimer’s disease facts and figures. (2023). Alzheimer's & Dementia, 19(4), 1598-1695. https://doi.org/10.1002/alz.13016

What is dementia? (n.d.). Alzheimer's Association. Retrieved August 2, 2023, from https://www.alz.org/alzheimers-dementia/what-is-dementia

Xiong, Q., Zhang, X., Wang, W.-F., & Gu, Y. (2020). A parallel algorithm framework for feature extraction of EEG signals on MPI. Computational and Mathematical Methods in Medicine, 2020, 1-10. https://doi.org/10.1155/2020/9812019

Yener, G. G., Leuchter, A. F., Jenden, D., Read, S. L., Cummings, J. L., & Miller, B. L. (1996). Quantitative EEG in frontotemporal dementia. Clinical Electroencephalography, 27(2), 61-68. https://doi.org/10.1177/155005949602700204

Zhao, Y., & He, L. (2015). Deep learning in the EEG diagnosis of alzheimer's disease. Computer Vision - ACCV 2014 Workshops, 340-353. https://doi.org/10.1007/978-3-319-16628-5_25

Published

11-30-2023

How to Cite

Yao, A., Goldsztein, G., & Renaud, A. (2023). Diagnosing Alzheimer’s Disease and Frontotemporal Dementia Using Machine Learning and EEG. Journal of Student Research, 12(4). https://doi.org/10.47611/jsrhs.v12i4.5843

Issue

Section

HS Research Articles