The Connection between Dopamine and Marijuana
DOI:
https://doi.org/10.47611/jsrhs.v12i4.5836Keywords:
dopamine, marijuana, dopamine synthesis, Phenylalanine, tyrosine, THC, Tetrahydrocannabinol, cannabisAbstract
Known as the most commonly used illegal drug, marijuana has upheld its infamous reputation for decades. This psychoactive drug instills feelings of euphoria and energy when smoked or consumed. As its popularity increases, the perception of the harm induced by marijuana is declining. Uninformed individuals continue to smoke marijuana without considering it risky behavior. Without being aware of the risks that marijuana poses, more individuals are likely to develop addictions. Dopamine is a neurotransmitter in the brain that has many key roles for both the body and the brain. It is responsible for satisfaction, motivation, motor control, and arousal. Through examination of the molecular structure of dopamine, the molecular structure of marijuana, and dopaminergic pathways in the brain, it is evident that there is a connection between marijuana use and decreased levels of dopamine. Long-term usage of marijuana has been shown to dysregulate the mesolimbic dopaminergic pathway. The mesolimbic pathway is a branch of neurons projecting from the ventral augmented area to the ventral striatum. Major functions of this pathway include addiction, pleasure, and reward-seeking behavior. Based on these defenses, there is a reasonable conclusion that chronic marijuana use leads to lower levels of dopamine in the brain.
Downloads
References or Bibliography
Best, J., Nijhout, H. F., & Reed, M. C. (2009). Homeostatic mechanisms in dopamine synthesis and release: a mathematical model. Theoretical Biology and Medical Modelling, 6(1). https://doi.org/10.1186/1742-4682-6-21
Bloomfield, M., Ashok, A. H., Volkow, N. D., & Howes, O. (2016). The effects of Δ9-tetrahydrocannabinol on the dopamine system. Nature, 539(7629), 369–377. https://doi.org/10.1038/nature20153
Cheng, M. H., & Bahar, I. (2015). Molecular mechanism of dopamine transport by human dopamine transporter. Structure, 23(11), 2171–2181. https://doi.org/10.1016/j.str.2015.09.001
Daubner, S. C., Le, T., & Wang, S. (2011). Tyrosine hydroxylase and regulation of dopamine synthesis. Archives of Biochemistry and Biophysics, 508(1), 1–12. https://doi.org/10.1016/j.abb.2010.12.017
Fahn, S. (2014). The medical treatment of Parkinson disease from James Parkinson to George Cotzias. Movement Disorders, 30(1), 4–18. https://doi.org/10.1002/mds.26102
Feng, Z., Hou, T., & Li, Y. (2012). Selectivity and activation of dopamine D3R from molecular dynamics. Journal of Molecular Modeling, 18(12), 5051–5063. https://doi.org/10.1007/s00894-012-1509-x
Howlett, A. C., Blume, L. C., & Dalton, G. D. (2010). CB1 Cannabinoid Receptors and their Associated Proteins. Current Medicinal Chemistry, 17(14), 1382–1393. https://doi.org/10.2174/092986710790980023
Kendall, D. A., & Yudowski, G. A. (2017). Cannabinoid receptors in the central nervous system: their signaling and roles in disease. Frontiers in Cellular Neuroscience, 10. https://doi.org/10.3389/fncel.2016.00294
Liu, C., & Kaeser, P. S. (2019). Mechanisms and regulation of dopamine release. Current Opinion in Neurobiology, 57, 46–53. https://doi.org/10.1016/j.conb.2019.01.001
Marsicano, G., & Kuner, R. (2008). Anatomical distribution of receptors, ligands and enzymes in the brain and in the spinal cord: Circuitries and Neurochemistry. Springer eBooks (pp. 161–201). https://doi.org/10.1007/978-0-387-74349-3_10
Nepal, B., Das, S., Reith, M. E. A., & Kortagere, S. (2023). Overview of the structure and function of the dopamine transporter and its protein interactions. Frontiers in Physiology, 14. https://doi.org/10.3389/fphys.2023.1150355
Olguín, H. J., Guzmán, D. C., García, E. H., & Mejía, G. B. (2016). The role of dopamine and its dysfunction as a consequence of oxidative stress. Oxidative Medicine and Cellular Longevity, 2016, 1–13. https://doi.org/10.1155/2016/9730467
Spiga, S., Lintas, A., & Diana, M. (2011). Altered mesolimbic dopamine system in THC dependence. Current Neuropharmacology, 9(1), 200–204. https://doi.org/10.2174/157015911795017083
Steindel, F., Lerner, R. G., Häring, M., Ruehle, S., Marsicano, G., Lutz, B., & Monory, K. (2013). Neuron-type specific cannabinoid-mediated G protein signalling in mouse hippocampus. Journal of Neurochemistry, 124(6), 795–807. https://doi.org/10.1111/jnc.12137
Sun, B., Feng, D., Chu, M. L. H., Fish, I., Lovera, S., Sands, Z. A., Kelm, S., Valade, A., Wood, M., Ceska, T., Kobilka, T. S., Lebon, F., & Kobilka, B. K. (2021). Crystal structure of dopamine D1 receptor in complex with G protein and a non-catechol agonist. Nature Communications, 12(1). https://doi.org/10.1038/s41467-021-23519-9
Tritsch, N. X., Ding, J., & Sabatini, B. L. (2012). Dopaminergic neurons inhibit striatal output through non-canonical release of GABA. Nature, 490(7419), 262–266. https://doi.org/10.1038/nature11466
Van De Giessen, E., Weinstein, J. J., Cassidy, C., Haney, M., Dong, Z., Ghazzaoui, R., Ojeil, N., Kegeles, L. S., Xu, X., Vadhan, N. P., Volkow, N. D., Slifstein, M., & Abi-Dargham, A. (2016). Deficits in striatal dopamine release in cannabis dependence. Molecular Psychiatry, 22(1), 68–75. https://doi.org/10.1038/mp.2016.21
Vaughan, R. A., & Foster, J. D. (2013). Mechanisms of dopamine transporter regulation in normal and disease states. Trends in Pharmacological Sciences, 34(9), 489–496. https://doi.org/10.1016/j.tips.2013.07.005
Vendelboe, T. V., Harris, P., Zhao, Y., Walter, T. S., Harlos, K., Omari, K. E., & Christensen, H. E. M. (2016). The crystal structure of human dopamine β-hydroxylase at 2.9 Å resolution. Science Advances, 2(4). https://doi.org/10.1126/sciadv.1500980
Volkow, N. D., Fowler, J. S., Wang, G., Baler, R., & Telang, F. (2009). Imaging dopamine’s role in drug abuse and addiction. Neuropharmacology, 56, 3–8. doi.org/10.1016/j.neuropharm.2008.05.022
Wang, S., Che, T., Levit, A., Shoichet, B. K., Wacker, D., & Roth, B. L. (2018). Structure of the D2 dopamine receptor bound to the atypical antipsychotic drug risperidone. Nature, 555(7695), 269–273. https://doi.org/10.1038/nature25758
Wang, J., Lou, H., Pedersen, C. J., Smith, A. D., & Perez, R. G. (2009). 14-3-3Ζ contributes to tyrosine hydroxylase activity in MN9D cells. Journal of Biological Chemistry, 284(21), 14011–14019. https://doi.org/10.1074/jbc.m901310200
Wang, S., Wacker, D., Levit, A., Che, T., Betz, R. M., McCorvy, J. D., Venkatakrishnan, A., Huang, X. P., Dror, R. O., Shoichet, B. K., & Roth, B. L. (2017). D 4 dopamine receptor high-resolution structures enable the discovery of selective agonists. Science, 358(6361), 381–386. https://doi.org/10.1126/science.aan5468
Yeragani, V. K., Tancer, M. E., Chokka, P., & Baker, G. B. (2010). Arvid Carlsson, and the story of dopamine. Indian Journal of Psychiatry, 52(1), 87. https://doi.org/10.4103/0019-5545.58907
Yin, J., Chen, K. Y. M., Clark, M. J., Hijazi, M., Kumari, P., Bai, X. C., Sunahara, R. K., Barth, P., & Rosenbaum, D. M. (2020). Structure of a D2 dopamine receptor–G-protein complex in a lipid membrane. Nature, 584(7819), 125–129. https://doi.org/10.1038/s41586-020-2379-5
Zhou, Y., Cao, C., He, L., Wang, X., & Zhang, X. C. (2019). Crystal structure of dopamine receptor D4 bound to the subtype selective ligand, L745870. eLife, 8. https://doi.org/10.7554/elife.48822
Published
How to Cite
Issue
Section
Copyright (c) 2023 Aastha Kulkarni
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.