The Connection between Dopamine and Marijuana

Authors

  • Aastha Kulkarni Providence High School

DOI:

https://doi.org/10.47611/jsrhs.v12i4.5836

Keywords:

dopamine, marijuana, dopamine synthesis, Phenylalanine, tyrosine, THC, Tetrahydrocannabinol, cannabis

Abstract

Known as the most commonly used illegal drug, marijuana has upheld its infamous reputation for decades. This psychoactive drug instills feelings of euphoria and energy when smoked or consumed. As its popularity increases, the perception of the harm induced by marijuana is declining. Uninformed individuals continue to smoke marijuana without considering it risky behavior. Without being aware of the risks that marijuana poses, more individuals are likely to develop addictions. Dopamine is a neurotransmitter in the brain that has many key roles for both the body and the brain. It is responsible for satisfaction, motivation, motor control, and arousal. Through examination of the molecular structure of dopamine, the molecular structure of marijuana, and dopaminergic pathways in the brain, it is evident that there is a connection between marijuana use and decreased levels of dopamine. Long-term usage of marijuana has been shown to dysregulate the mesolimbic dopaminergic pathway. The mesolimbic pathway is a branch of neurons projecting from the ventral augmented area to the ventral striatum. Major functions of this pathway include addiction, pleasure, and reward-seeking behavior. Based on these defenses, there is a reasonable conclusion that chronic marijuana use leads to lower levels of dopamine in the brain. 

Downloads

Download data is not yet available.

References or Bibliography

Best, J., Nijhout, H. F., & Reed, M. C. (2009). Homeostatic mechanisms in dopamine synthesis and release: a mathematical model. Theoretical Biology and Medical Modelling, 6(1). https://doi.org/10.1186/1742-4682-6-21

Bloomfield, M., Ashok, A. H., Volkow, N. D., & Howes, O. (2016). The effects of Δ9-tetrahydrocannabinol on the dopamine system. Nature, 539(7629), 369–377. https://doi.org/10.1038/nature20153

Cheng, M. H., & Bahar, I. (2015). Molecular mechanism of dopamine transport by human dopamine transporter. Structure, 23(11), 2171–2181. https://doi.org/10.1016/j.str.2015.09.001

Daubner, S. C., Le, T., & Wang, S. (2011). Tyrosine hydroxylase and regulation of dopamine synthesis. Archives of Biochemistry and Biophysics, 508(1), 1–12. https://doi.org/10.1016/j.abb.2010.12.017

Fahn, S. (2014). The medical treatment of Parkinson disease from James Parkinson to George Cotzias. Movement Disorders, 30(1), 4–18. https://doi.org/10.1002/mds.26102

Feng, Z., Hou, T., & Li, Y. (2012). Selectivity and activation of dopamine D3R from molecular dynamics. Journal of Molecular Modeling, 18(12), 5051–5063. https://doi.org/10.1007/s00894-012-1509-x

Howlett, A. C., Blume, L. C., & Dalton, G. D. (2010). CB1 Cannabinoid Receptors and their Associated Proteins. Current Medicinal Chemistry, 17(14), 1382–1393. https://doi.org/10.2174/092986710790980023

Kendall, D. A., & Yudowski, G. A. (2017). Cannabinoid receptors in the central nervous system: their signaling and roles in disease. Frontiers in Cellular Neuroscience, 10. https://doi.org/10.3389/fncel.2016.00294

Liu, C., & Kaeser, P. S. (2019). Mechanisms and regulation of dopamine release. Current Opinion in Neurobiology, 57, 46–53. https://doi.org/10.1016/j.conb.2019.01.001

Marsicano, G., & Kuner, R. (2008). Anatomical distribution of receptors, ligands and enzymes in the brain and in the spinal cord: Circuitries and Neurochemistry. Springer eBooks (pp. 161–201). https://doi.org/10.1007/978-0-387-74349-3_10

Nepal, B., Das, S., Reith, M. E. A., & Kortagere, S. (2023). Overview of the structure and function of the dopamine transporter and its protein interactions. Frontiers in Physiology, 14. https://doi.org/10.3389/fphys.2023.1150355

Olguín, H. J., Guzmán, D. C., García, E. H., & Mejía, G. B. (2016). The role of dopamine and its dysfunction as a consequence of oxidative stress. Oxidative Medicine and Cellular Longevity, 2016, 1–13. https://doi.org/10.1155/2016/9730467

Spiga, S., Lintas, A., & Diana, M. (2011). Altered mesolimbic dopamine system in THC dependence. Current Neuropharmacology, 9(1), 200–204. https://doi.org/10.2174/157015911795017083

Steindel, F., Lerner, R. G., Häring, M., Ruehle, S., Marsicano, G., Lutz, B., & Monory, K. (2013). Neuron-type specific cannabinoid-mediated G protein signalling in mouse hippocampus. Journal of Neurochemistry, 124(6), 795–807. https://doi.org/10.1111/jnc.12137

Sun, B., Feng, D., Chu, M. L. H., Fish, I., Lovera, S., Sands, Z. A., Kelm, S., Valade, A., Wood, M., Ceska, T., Kobilka, T. S., Lebon, F., & Kobilka, B. K. (2021). Crystal structure of dopamine D1 receptor in complex with G protein and a non-catechol agonist. Nature Communications, 12(1). https://doi.org/10.1038/s41467-021-23519-9

Tritsch, N. X., Ding, J., & Sabatini, B. L. (2012). Dopaminergic neurons inhibit striatal output through non-canonical release of GABA. Nature, 490(7419), 262–266. https://doi.org/10.1038/nature11466

Van De Giessen, E., Weinstein, J. J., Cassidy, C., Haney, M., Dong, Z., Ghazzaoui, R., Ojeil, N., Kegeles, L. S., Xu, X., Vadhan, N. P., Volkow, N. D., Slifstein, M., & Abi-Dargham, A. (2016). Deficits in striatal dopamine release in cannabis dependence. Molecular Psychiatry, 22(1), 68–75. https://doi.org/10.1038/mp.2016.21

Vaughan, R. A., & Foster, J. D. (2013). Mechanisms of dopamine transporter regulation in normal and disease states. Trends in Pharmacological Sciences, 34(9), 489–496. https://doi.org/10.1016/j.tips.2013.07.005

Vendelboe, T. V., Harris, P., Zhao, Y., Walter, T. S., Harlos, K., Omari, K. E., & Christensen, H. E. M. (2016). The crystal structure of human dopamine β-hydroxylase at 2.9 Å resolution. Science Advances, 2(4). https://doi.org/10.1126/sciadv.1500980

Volkow, N. D., Fowler, J. S., Wang, G., Baler, R., & Telang, F. (2009). Imaging dopamine’s role in drug abuse and addiction. Neuropharmacology, 56, 3–8. doi.org/10.1016/j.neuropharm.2008.05.022

Wang, S., Che, T., Levit, A., Shoichet, B. K., Wacker, D., & Roth, B. L. (2018). Structure of the D2 dopamine receptor bound to the atypical antipsychotic drug risperidone. Nature, 555(7695), 269–273. https://doi.org/10.1038/nature25758

Wang, J., Lou, H., Pedersen, C. J., Smith, A. D., & Perez, R. G. (2009). 14-3-3Ζ contributes to tyrosine hydroxylase activity in MN9D cells. Journal of Biological Chemistry, 284(21), 14011–14019. https://doi.org/10.1074/jbc.m901310200

Wang, S., Wacker, D., Levit, A., Che, T., Betz, R. M., McCorvy, J. D., Venkatakrishnan, A., Huang, X. P., Dror, R. O., Shoichet, B. K., & Roth, B. L. (2017). D 4 dopamine receptor high-resolution structures enable the discovery of selective agonists. Science, 358(6361), 381–386. https://doi.org/10.1126/science.aan5468

Yeragani, V. K., Tancer, M. E., Chokka, P., & Baker, G. B. (2010). Arvid Carlsson, and the story of dopamine. Indian Journal of Psychiatry, 52(1), 87. https://doi.org/10.4103/0019-5545.58907

Yin, J., Chen, K. Y. M., Clark, M. J., Hijazi, M., Kumari, P., Bai, X. C., Sunahara, R. K., Barth, P., & Rosenbaum, D. M. (2020). Structure of a D2 dopamine receptor–G-protein complex in a lipid membrane. Nature, 584(7819), 125–129. https://doi.org/10.1038/s41586-020-2379-5

Zhou, Y., Cao, C., He, L., Wang, X., & Zhang, X. C. (2019). Crystal structure of dopamine receptor D4 bound to the subtype selective ligand, L745870. eLife, 8. https://doi.org/10.7554/elife.48822

Published

11-30-2023

How to Cite

Kulkarni, A. (2023). The Connection between Dopamine and Marijuana. Journal of Student Research, 12(4). https://doi.org/10.47611/jsrhs.v12i4.5836

Issue

Section

HS Review Projects