The Representation of Valence by Visual Category in the Orbitofrontal Cortex and Amygdala
DOI:
https://doi.org/10.47611/jsrhs.v12i4.5778Keywords:
valence, categorical representation, orbitofrontal cortex, amygdalaAbstract
Emotion is critical for survival in all animals. Even in modern humans, processing emotion holds significant adaptive value. In neuroscientific investigations of emotion, both the amygdala, part of the evolutionarily primitive limbic system, and the orbitofrontal cortex, part of the evolutionarily newer cortical system, have been highly implicated in the representation of valence, a major emotional component. Although the strict divide between the limbic system and the cortical system in brain function has been rejected, the underlying notions of theories of brain evolution lead to the hypothesis that the amygdala is advantageous in processing evolutionarily older adaptive value whereas the orbitofrontal cortex is advantageous in processing evolutionarily newer adaptive value. In this study, this hypothesis is tested using a functional magnetic resonance imaging dataset in which human participants made valence judgments on natural items and scenes (i.e., evolutionarily old with greater immediate adaptive value) and man-made items and scenes (i.e., evolutionarily new with lesser immediate adaptive value). The results show that the amygdala represents valence of natural but not man-made scenes, consistent with the hypothesis. The orbitofrontal cortex, in contrast, represents valence of both natural and man-made scenes, partially consistent with the hypothesis. The findings illustrate how visual categories defined by adaptive value shape the neural representation of valence in the contrasting limbic and cortical systems.
Downloads
References or Bibliography
Alexopoulos, T., & Ric, F. (2007). The evaluation-behavior link: Direct and beyond valence. Journal of Experimental Social Psychology, 43(6), 1010–1016. https://doi.org/10.1016/j.jesp.2006.10.017
Anderson, M. L. (2010). Neural reuse: a fundamental organizational principle of the brain. The Behavioral and Brain Sciences, 33(4), 245–266; discussion 266–313. https://doi.org/10.1017/S0140525X10000853
Barat, E., Wirth, S., & Duhamel, J.-R. (2018). Face cells in orbitofrontal cortex represent social categories. Proceedings of the National Academy of Sciences of the United States of America, 115(47), E11158–E11167. https://doi.org/10.1073/pnas.1806165115
Bocanegra, B. R., & Zeelenberg, R. (2009). Emotion improves and impairs early vision. Psychological Science, 20(6), 707–713. https://doi.org/10.1111/j.1467-9280.2009.02354.x
Cao, Z., Zhao, Y., Tan, T., Chen, G., Ning, X., Zhan, L., & Yang, J. (2014). Distinct brain activity in processing negative pictures of animals and objects - the role of human contexts. NeuroImage, 84, 901–910. https://doi.org/10.1016/j.neuroimage.2013.09.064
Čeko, M., Kragel, P. A., Woo, C.-W., López-Solà, M., & Wager, T. D. (2022). Common and stimulus-type-specific brain representations of negative affect. Nature Neuroscience, 25(6), 760–770. https://doi.org/10.1038/s41593-022-01082-w
Chikazoe, J., Lee, D. H., Kriegeskorte, N., & Anderson, A. K. (2014). Population coding of affect across stimuli, modalities and individuals. Nature Neuroscience, 17(8), 1114–1122. https://doi.org/10.1038/nn.3749
Coker-Appiah, D. S., White, S. F., Clanton, R., Yang, J., Martin, A., & Blair, R. J. R. (2013). Looming animate and inanimate threats: the response of the amygdala and periaqueductal gray. Social Neuroscience, 8(6), 621–630. https://doi.org/10.1080/17470919.2013.839480
Epstein, R., & Kanwisher, N. (1998). A cortical representation of the local visual environment. Nature, 392(6676), 598–601. https://doi.org/10.1038/33402
Fuller, M. D., Emrick, M. A., Sadilek, M., Scheuer, T., & Catterall, W. A. (2010). Molecular mechanism of calcium channel regulation in the fight-or-flight response. Science Signaling, 3(141), ra70. https://doi.org/10.1126/scisignal.2001152
Haxby, J. V., Gobbini, M. I., Furey, M. L., Ishai, A., Schouten, J. L., & Pietrini, P. (2001). Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science, 293(5539), 2425–2430. https://doi.org/10.1126/science.1063736
Haynes, J.-D., & Rees, G. (2006). Decoding mental states from brain activity in humans. Nature Reviews. Neuroscience, 7(7), 523–534. https://doi.org/10.1038/nrn1931
Jain, N., Wang, A., Henderson, M. M., Lin, R., Prince, J. S., Tarr, M. J., & Wehbe, L. (2023). Selectivity for food in human ventral visual cortex. Communications Biology, 6(1), 175. https://doi.org/10.1038/s42003-023-04546-2
Jansen, A. S., Nguyen, X. V., Karpitskiy, V., Mettenleiter, T. C., & Loewy, A. D. (1995). Central command neurons of the sympathetic nervous system: basis of the fight-or-flight response. Science, 270(5236), 644–646. https://doi.org/10.1126/science.270.5236.644
Jin, J., Zelano, C., Gottfried, J. A., & Mohanty, A. (2015). Human Amygdala Represents the Complete Spectrum of Subjective Valence. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 35(45), 15145–15156. https://doi.org/10.1523/JNEUROSCI.2450-15.2015
Kirk, U. (2008). The neural basis of object-context relationships on aesthetic judgment. PloS One, 3(11), e3754. https://doi.org/10.1371/journal.pone.0003754
Kriegeskorte, N., Mur, M., Ruff, D. A., Kiani, R., Bodurka, J., Esteky, H., Tanaka, K., & Bandettini, P. A. (2008). Matching categorical object representations in inferior temporal cortex of man and monkey. Neuron, 60(6), 1126–1141. https://doi.org/10.1016/j.neuron.2008.10.043
LeDoux, J. E. (2000). Emotion circuits in the brain. Annual Review of Neuroscience, 23, 155–184. https://doi.org/10.1146/annurev.neuro.23.1.155
Lindquist, K. A., Satpute, A. B., Wager, T. D., Weber, J., & Barrett, L. F. (2016). The Brain Basis of Positive and Negative Affect: Evidence from a Meta-Analysis of the Human Neuroimaging Literature. Cerebral Cortex , 26(5), 1910–1922. https://doi.org/10.1093/cercor/bhv001
Lowe, M. X., Rajsic, J., Ferber, S., & Walther, D. B. (2018). Discriminating scene categories from brain activity within 100 milliseconds. Cortex; a Journal Devoted to the Study of the Nervous System and Behavior, 106, 275–287. https://doi.org/10.1016/j.cortex.2018.06.006
Machado, C. J., Kazama, A. M., & Bachevalier, J. (2009). Impact of amygdala, orbital frontal, or hippocampal lesions on threat avoidance and emotional reactivity in nonhuman primates. Emotion , 9(2), 147–163. https://doi.org/10.1037/a0014539
Mineka, S., & Ohman, A. (2002). Phobias and preparedness: the selective, automatic, and encapsulated nature of fear. Biological Psychiatry, 52(10), 927–937. https://doi.org/10.1016/s0006-3223(02)01669-4
Murray, E. A., & Izquierdo, A. (2007). Orbitofrontal cortex and amygdala contributions to affect and action in primates. Annals of the New York Academy of Sciences, 1121, 273–296. https://doi.org/10.1196/annals.1401.021
Öhman, A., Flykt, A., & Esteves, F. (2001). Emotion drives attention: Detecting the snake in the grass. Journal of Experimental Psychology. General, 130(3), 466–478. https://doi.org/10.1037/0096-3445.130.3.466
Omigie, D., Dellacherie, D., Hasboun, D., George, N., Clement, S., Baulac, M., Adam, C., & Samson, S. (2015). An Intracranial EEG Study of the Neural Dynamics of Musical Valence Processing. Cerebral Cortex , 25(11), 4038–4047. https://doi.org/10.1093/cercor/bhu118
Pacella, D., Ponticorvo, M., Gigliotta, O., & Miglino, O. (2017). Basic emotions and adaptation. A computational and evolutionary model. PloS One, 12(11), e0187463. https://doi.org/10.1371/journal.pone.0187463
Rolls, E. T. (2023). Emotion, motivation, decision-making, the orbitofrontal cortex, anterior cingulate cortex, and the amygdala. Brain Structure & Function, 228(5), 1201–1257. https://doi.org/10.1007/s00429-023-02644-9
Rolls, E. T., Deco, G., Huang, C.-C., & Feng, J. (2023). Human amygdala compared to orbitofrontal cortex connectivity, and emotion. Progress in Neurobiology, 220, 102385. https://doi.org/10.1016/j.pneurobio.2022.102385
Rudebeck, P. H., & Murray, E. A. (2008). Amygdala and orbitofrontal cortex lesions differentially influence choices during object reversal learning. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 28(33), 8338–8343. https://doi.org/10.1523/JNEUROSCI.2272-08.2008
Sonkusare, S., Qiong, D., Zhao, Y., Liu, W., Yang, R., Mandali, A., Manssuer, L., Zhang, C., Cao, C., Sun, B., Zhan, S., & Voon, V. (2023). Frequency dependent emotion differentiation and directional coupling in amygdala, orbitofrontal and medial prefrontal cortex network with intracranial recordings. Molecular Psychiatry, 28(4), 1636–1646. https://doi.org/10.1038/s41380-022-01883-2
Valence. (n.d.). APA Dictionary of Psychology. https://dictionary.apa.org/valence
Viinikainen, M., Kätsyri, J., & Sams, M. (2012). Representation of perceived sound valence in the human brain. Human Brain Mapping, 33(10), 2295–2305. https://doi.org/10.1002/hbm.21362
Published
How to Cite
Issue
Section
Copyright (c) 2023 David Jang
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.