Alzheimer’s Disease: A Comprehensive Review of its Causes, Diagnosis, and Treatment
DOI:
https://doi.org/10.47611/jsrhs.v12i4.5770Keywords:
Alzheimer's, Alzheimer's Disease, AD, Treatment, Cure, Brain, Neurology, Neuroscience, tau, amyloid, amyloid beta, misfolding, peptides, proteins, APP, amyloid precursor protein, dementia, MCI, mild cogntive impairment, symptoms, review, causes, diagnosis, neurons, neurofibrillary tangles, NFT, CSF, cerebrospinal fluid, plaques, protein synthesis, DNA, RNA, secretase, computed tomography, CT, CT scan, Positron Emission Tomography, PET, PET scan, amyloid PET, tau PET, tracers, cognitive function, cognitive decline, ach, ache, achei, cholinergic hypothesis, acetylcholine, acetylcholinesterase, Donepezil, Galantamine, CAD106, Lecanemab, cognition, cognitive ability, 40hz, 40hz therapy, gamma oscillation, gamma waves, therapy, stimulation, audiovisual, adverse events, AE, tangles, fibrilization, CTF83, P3, AICD50, AB, tRNA, mRNA, amino acid, hyperphosphorylation, phosphorylation, aggregate, microtubuleAbstract
Alzheimer’s Disease (AD) is a progressive neurodegenerative disease that results in the loss of memory, motor function, ability to think, and other basic functions required for day-to-day life. The causes of the disease are still being investigated, but scientists and researchers have mostly agreed on one of the major genetic contributions to the disease. The excess buildup of two proteins, Tau and β-amyloid, limits communication between nerve cells or neurons. The buildup of these proteins only increases with the progression of the disease. This paper will discuss the genetic causes of AD, the process behind the formation of neurofibrillary tangles and amyloid plaques, recent neuroimaging techniques that help diagnose the disease, current symptomatic treatments, and upcoming future treatments that may be able to slow the progression of the disease significantly.
Downloads
References or Bibliography
Breijyeh, Z., & Karaman, R. (2020). Comprehensive Review on Alzheimer’s Disease: Causes and Treatment. Molecules, 25(24), 5789. https://doi.org/10.3390/molecules25245789
Chan, D., Suk, H.-J., Jackson, B. L., Milman, N. P., Stark, D., Klerman, E. B., Kitchener, E., Fernandez Avalos, V. S., Banerjee, A., Beach, S. D., Blanchard, J., Stearns, C., Boes, A., Uitermarkt, B., Gander, P., Howard III, M., Sternberg, E. J., Nieto-Castanon, A., Anteraper, S., & Whitfield-Gabrieli, S. (2021). Gamma Frequency Sensory Stimulation in Probable Mild Alzheimer’s Dementia Patients: Results of a Preliminary Clinical Trial. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3846540
Chow, V. W., Mattson, M. P., Wong, P. C., & Gleichmann, M. (2009). An Overview of APP Processing Enzymes and Products. NeuroMolecular Medicine, 12(1), 1–12. https://doi.org/10.1007/s12017-009-8104-z
Coronel, R., Bernabeu-Zornoza, A., Palmer, C., Muñiz-Moreno, M., Zambrano, A., Cano, E., & Liste, I. (2018). Role of Amyloid Precursor Protein (APP) and Its Derivatives in the Biology and Cell Fate Specification of Neural Stem Cells. Molecular Neurobiology, 55(9), 7107–7117. https://doi.org/10.1007/s12035-018-0914-2
Hameed, S., Fuh, J.-L., Senanarong, V., Ebenezer, E. G. M., Looi, I., Dominguez, J. C., Park, K. W., Karanam, A. K., & Simon, O. (2020). Role of Fluid Biomarkers and PET Imaging in Early Diagnosis and its Clinical Implication in the Management of Alzheimer’s Disease. Journal of Alzheimer’s Disease Reports, 4(1), 21–37. https://doi.org/10.3233/adr-190143
He, Q., Colon-Motas, K. M., Pybus, A. F., Piendel, L., Seppa, J. K., Margaret Urban Walker, Manzanares, C., Qiu, D., Svjetlana Miocinovic, Wood, L. B., Levey, A. I., Lah, J. J., & Singer, A. C. (2021). A feasibility trial of gamma sensory flicker for patients with prodromal Alzheimer’s disease. 7(1). https://doi.org/10.1002/trc2.12178
Iaccarino, H. F., Singer, A. C., Martorell, A. J., Rudenko, A., Gao, F., Gillingham, T. Z., Mathys, H., Seo, J., Kritskiy, O., Abdurrob, F., Adaikkan, C., Canter, R. G., Rueda, R., Brown, E. N., Boyden, E. S., & Tsai, L.-H. (2016). Gamma frequency entrainment attenuates amyloid load and modifies microglia. Nature, 540(7632), 230–235. https://doi.org/10.1038/nature20587
Kadavath, H., Hofele, R. V., Biernat, J., Kumar, S., Tepper, K., Urlaub, H., Mandelkow, E., & Zweckstetter, M. (2015). Tau stabilizes microtubules by binding at the interface between tubulin heterodimers. Proceedings of the National Academy of Sciences of the United States of America, 112(24), 7501–7506. https://doi.org/10.1073/pnas.1504081112
Martorell, A. J., Paulson, A. L., Suk, H.-J., Abdurrob, F., Drummond, G. T., Guan, W., Young, J. Z., Kim, D. N.-W., Kritskiy, O., Barker, S. J., Mangena, V., Prince, S. M., Brown, E. N., Chung, K., Boyden, E. S., Singer, A. C., & Tsai, L.-H. (2019). Multi-sensory Gamma Stimulation Ameliorates Alzheimer’s-Associated Pathology and Improves Cognition. Cell, 177(2), 256-271.e22. https://doi.org/10.1016/j.cell.2019.02.014
Qing, H., Li, N.-M., Liu, K.-F., Qiu, Y.-J., Zhang, H.-H., & Nakanishi, H. (2019). Mutations of beta-amyloid precursor protein alter the consequence of Alzheimer’s disease pathogenesis. Neural Regeneration Research, 14(4), 658. https://doi.org/10.4103/1673-5374.247469
Suk, H., Chan, D., Jackson, B., Fernandez, V., Stark, D., Milman, N., Beach, S., Uitermarkt, B., Gander, P., Boes, A. D., Brown, E., Boyden, E., & Tsai, L. (2020). Sensory gamma frequency stimulation in cognitively healthy and AD individuals safely induces highly coordinated 40 hz neural oscillation: A preliminary study of non‐invasive sensory stimulation for treating Alzheimer’s disease. Alzheimer’s & Dementia, 16(S7). https://doi.org/10.1002/alz.041146
Sunderland, T., Linker, G., Mirza, N., Putnam, K. T., Friedman, D. L., Kimmel, L. H., Bergeson, J., Manetti, G. J., Zimmermann, M., Tang, B., Bartko, J. J., & Cohen, R. M. (2003). Decreased β-Amyloid1-42and Increased Tau Levels in Cerebrospinal Fluid of Patients With Alzheimer Disease. JAMA, 289(16). https://doi.org/10.1001/jama.289.16.2094
Suppiah, S., Didier, M.-A., & Vinjamuri, S. (2019). The Who, When, Why, and How of PET Amyloid Imaging in Management of Alzheimer’s Disease—Review of Literature and Interesting Images. Diagnostics, 9(2), 65. https://doi.org/10.3390/diagnostics9020065
Traikapi, A., & Konstantinou, N. (2021). Gamma Oscillations in Alzheimer’s Disease and Their Potential Therapeutic Role. Frontiers in Systems Neuroscience, 15. https://doi.org/10.3389/fnsys.2021.782399
van Dyck, C. H., Swanson, C. J., Aisen, P., Bateman, R. J., Chen, C., Gee, M., Kanekiyo, M., Li, D., Reyderman, L., Cohen, S., Froelich, L., Katayama, S., Sabbagh, M., Vellas, B., Watson, D., Dhadda, S., Irizarry, M., Kramer, L. D., & Iwatsubo, T. (2022). Lecanemab in Early Alzheimer’s Disease. New England Journal of Medicine, 388(1). https://doi.org/10.1056/nejmoa2212948
Vandenberghe, R., Riviere, M.-E., Caputo, A., Sovago, J., Maguire, R. P., Farlow, M., Marotta, G., Sanchez-Valle, R., Scheltens, P., Ryan, J. M., & Graf, A. (2016). Active Aβ immunotherapy CAD106 in Alzheimer’s disease: A phase 2b study. Alzheimer’s & Dementia: Translational Research & Clinical Interventions, 3(1), 10–22. https://doi.org/10.1016/j.trci.2016.12.003
Zhang, H., Cao, Y., Ma, L., Wei, Y., & Li, H. (2021). Possible Mechanisms of Tau Spread and Toxicity in Alzheimer’s Disease. Frontiers, 9. https://doi.org/10.3389/fcell.2021.707268
Published
How to Cite
Issue
Section
Copyright (c) 2023 Anirudh Prabhu
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.