Alexander Disease: Scientific Advancement and Therapeutic Intervention in Rare Disease Research

Authors

  • Arya Reddy High School Author
  • Jacqueline Erler

DOI:

https://doi.org/10.47611/jsrhs.v12i4.5764

Keywords:

Alexander Disease, Neurodegenerative, Rare Disease, White Matter, Glial Fibrillary Acidic Protein, Rosenthal Fiber, GFAP, Leukodystrophy, Myelin, Gene Therapy, Antisense Oligonucleotide

Abstract

Alexander Disease (AxD) is a rare, heritable white matter condition, or leukodystrophy, that helps to understand how collaborative, translational research can identify therapeutic options in a complex illness. AxD is a rare disease, first described in 1949, that affects approximately one in 2.7 million births. The disease hinders the function of the central nervous system (CNS) through the biotoxic overproduction of protein aggregates which cause the deterioration of the myelin sheath. Given the extreme rarity of AxD, disease-specific research is relatively limited, and there is no disease-modifying treatment currently available. At present, a clinical trial is underway to examine the safety and efficacy of Ionis Pharmaceuticals’ ION373, an Antisense Oligonucleotide (ASO), that has reported success in preventing the progression of AxD in mouse models. This paper reviews the key components of AxD, therapeutic designs for AxD, and ultimately suggests future directions to optimize the therapeutic approach. This review also aims to promote rare disease awareness, as scientific progress for conditions like Alexander Disease is achieved through advocacy and promotion.

Downloads

Download data is not yet available.

References or Bibliography

Adang, L. A., Sherbini, O., Ball, L., Bloom, M., Darbari, A., Amartino, H., DiVito, D., Eichler, F., Escolar, M., Evans, S. H., Fatemi, A., Fraser, J., Hollowell, L., Jaffe, N., Joseph, C., Karpinski, M., Keller, S., Maddock, R., Mancilla, E., & McClary, B. (2017). Revised consensus statement on the preventive and symptomatic care of patients with leukodystrophies. Molecular Genetics and Metabolism, 122(1-2), 18–32. https://doi.org/10.1016/j.ymgme.2017.08.006

Alexander disease: MedlinePlus Genetics. (n.d.). Medlineplus.gov. https://medlineplus.gov/genetics/condition/alexander-disease/

Alexander Disease - Symptoms, Causes, Treatment | NORD. (n.d.). Rarediseases.org. Retrieved August 21, 2023, from https://rarediseases.org/rare-diseases/alexander-disease/#disease-overview-main

Alizadeh, A., Dyck, S. M., & Karimi-Abdolrezaee, S. (2015). Myelin damage and repair in pathologic CNS: challenges and prospects. Frontiers in Molecular Neuroscience, 8. https://doi.org/10.3389/fnmol.2015.00035

Amanat, M., Nemeth, C. L., Fine, A. S., Leung, D. G., & Fatemi, A. (2022). Antisense Oligonucleotide Therapy for the Nervous System: From Bench to Bedside with Emphasis on Pediatric Neurology. Pharmaceutics, 14(11), 2389. https://doi.org/10.3390/pharmaceutics14112389

Anthony, K. (2022). RNA-based therapeutics for neurological diseases. RNA Biology, 19(1), 176–190. https://doi.org/10.1080/15476286.2021.2021650

Arain, M., Mathur, P., Rais, A., Nel, W., Sandhu, R., Haque, M., Johal, L., & Sharma, S. (2013). Maturation of the Adolescent Brain. Neuropsychiatric Disease and Treatment, 9, 449–461. https://doi.org/10.2147/ndt.s39776

Belkadi, A., Bolze, A., Itan, Y., Cobat, A., Vincent, Q. B., Antipenko, A., Shang, L., Boisson, B., Casanova, J.-L., & Abel, L. (2015). Whole-genome sequencing is more powerful than whole-exome sequencing for detecting exome variants. Proceedings of the National Academy of Sciences, 112(17), 5473–5478. https://doi.org/10.1073/pnas.1418631112

Brenner, M., Johnson, A. B., Boespflug-Tanguy, O., Rodriguez, D., Goldman, J. E., & Messing, A. (2001). Mutations in GFAP, encoding glial fibrillary acidic protein, are associated with Alexander disease. Nature Genetics, 27(1), 117–120. https://doi.org/10.1038/83679

Carroll, J. B., Warby, S. C., Southwell, A. L., Doty, C. N., Greenlee, S., Skotte, N., Hung, G., Bennett, C. F., Freier, S. M., & Hayden, M. R. (2011). Potent and Selective Antisense Oligonucleotides Targeting Single-Nucleotide Polymorphisms in the Huntington Disease Gene / Allele-Specific Silencing of Mutant Huntingtin. Molecular Therapy, 19(12), 2178–2185. https://doi.org/10.1038/mt.2011.201

Chen, C. Z., Neumann, B., Förster, S., & Franklin, R. J. M. (2021). Schwann cell remyelination of the central nervous system: why does it happen and what are the benefits? Open Biology, 11(1), 200352. https://doi.org/10.1098/rsob.200352

Costello, D. J., Eichler, A. F., & Eichler, F. S. (2009). Leukodystrophies. The Neurologist, 15(6), 319–328. https://doi.org/10.1097/nrl.0b013e3181b287c8

Daneman, R., & Prat, A. (2015). The Blood–Brain Barrier. Cold Spring Harbor Perspectives in Biology, 7(1), a020412. https://doi.org/10.1101/cshperspect.a020412

Delhaas, E. M., & Huygen, F. J. P. M. (2020). Complications associated with intrathecal drug delivery systems. BJA Education, 20(2), 51–57. https://doi.org/10.1016/j.bjae.2019.11.002

Dlamini, N., & du Plessis, V. (2016). MRI diagnosis of infantile Alexander disease in a 14 month old African boy. Journal of Radiology Case Reports, 10(10), 7–14. https://doi.org/10.3941/jrcr.v10i10.2943

Giedd, J. N., Blumenthal, J., Jeffries, N. O., Castellanos, F. X., Liu, H., Zijdenbos, A., Paus, T., Evans, A. C., & Rapoport, J. L. (1999). Brain development during childhood and adolescence: a longitudinal MRI study. Nature Neuroscience, 2(10), 861–863. https://doi.org/10.1038/13158

Li, L., Tian, E., Chen, X., Sanjana, N. E., Riggs, A. D., & Shi, Y. (n.d.). GFAP Mutations in Astrocytes Impair Oligodendrocyte Progenitor Proliferation and Myelination in an hiPSC Model of Alexander Disease [Review of GFAP Mutations in Astrocytes Impair Oligodendrocyte Progenitor Proliferation and Myelination in an hiPSC Model of Alexander Disease]. Cell Stem Cell, 23(2), 239–251. https://doi.org/10.1016/j.stem.2018.07.009

Gordon-Lipkin, E., & Fatemi, A. (2018). Current Therapeutic Approaches in Leukodystrophies: A Review. Journal of Child Neurology, 33(13), 861–868. https://doi.org/10.1177/0883073818792313

Graff-Radford, J., Schwartz, K. M., Gavrilova, R. H., Lachance, D. H., & Kumar, N. (2013). Neuroimaging and clinical features in type II (late-onset) Alexander disease. Neurology, 82(1), 49–56. https://doi.org/10.1212/01.wnl.0000438230.33223.bc

Hagemann, T. L., Connor, J. X., & Messing, A. (2006). Alexander Disease-Associated Glial Fibrillary Acidic Protein Mutations in Mice Induce Rosenthal Fiber Formation and a White Matter Stress Response. Journal of Neuroscience, 26(43), 11162–11173. https://doi.org/10.1523/jneurosci.3260-06.2006

Hagemann, T. L., Powers, B., Mazur, C., Kim, A., Wheeler, S., Hung, G., Swayze, E., & Messing, A. (2018). Antisense suppression of glial fibrillary acidic protein as a treatment for Alexander disease. Annals of Neurology, 83(1), 27–39. https://doi.org/10.1002/ana.25118

Heaven, M. R., Flint, D., Randall, S. M., Sosunov, A. A., Wilson, L., Barnes, S., Goldman, J. E., Muddiman, D. C., & Brenner, M. (2016). Composition of Rosenthal Fibers, the Protein Aggregate Hallmark of Alexander Disease. Journal of Proteome Research, 15(7), 2265–2282. https://doi.org/10.1021/acs.jproteome.6b00316

Hill, S. F., & Meisler, M. H. (2021). Antisense Oligonucleotide Therapy for Neurodevelopmental Disorders. Developmental Neuroscience, 43(3-4), 247–252. https://doi.org/10.1159/000517686

Hol, E. M., & Pekny, M. (2015). Glial fibrillary acidic protein (GFAP) and the astrocyte intermediate filament system in diseases of the central nervous system. Current Opinion in Cell Biology, 32, 121–130. https://doi.org/10.1016/j.ceb.2015.02.004

Ionis Pharmaceuticals, Inc., CTG Labs - NCBI. (n.d.). Www.clinicaltrials.gov. Retrieved August 21, 2023, from https://www.clinicaltrials.gov/study/NCT04849741?cond=Alexander%20Disease&rank=2

Jany, P. L., Hagemann, T. L., & Messing, A. (2013). GFAP Expression as an Indicator of Disease Severity in Mouse Models of Alexander Disease. ASN Neuro, 5(2), AN20130003. https://doi.org/10.1042/an20130003

Klistorner, A., & Barnett, M. (2021). Remyelination Trials. Neurology - Neuroimmunology Neuroinflammation, 8(6), e1066. https://doi.org/10.1212/nxi.0000000000001066

Knaap, M. S. van der, Naidu, S., Breiter, S. N., Blaser, S., Stroink, H., Springer, S., Begeer, J. C., Coster, R. van, Barth, P. G., Thomas, N. H., Valk, J., & Powers, J. M. (2001). Alexander Disease: Diagnosis with MR Imaging. American Journal of Neuroradiology, 22(3), 541–552. https://www.ajnr.org/content/22/3/541

Kuhn J., Cascella M. Alexander Disease. [Updated 2023 Jun 4]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK562242/

Kuijper, E. C., Bergsma, A. J., Pijnappel, W. W. M. P., & Aartsma‐Rus, A. (2020). Opportunities and challenges for antisense oligonucleotide therapies. Journal of Inherited Metabolic Disease. https://doi.org/10.1002/jimd.12251

Kutzelnigg, A., & Lassmann, H. (2014). Pathology of multiple sclerosis and related inflammatory demyelinating diseases. Handbook of Clinical Neurology, 15–58. https://doi.org/10.1016/b978-0-444-52001-2.00002-9

Kuwahara, H., Jin Dong Song, Takahiro Shimoura, Kie Yoshida-Tanaka, Mizuno, T., Mochizuki, T., Satoshi Zeniya, Li, F., Kazutaka Nishina, Nagata, T., Ito, S., Hiroyuki Kusuhara, & Yokota, T. (2018). Modulation of blood-brain barrier function by a heteroduplex oligonucleotide in vivo. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-22577-2

Matthes, F., Stroobants, S., Gerlach, D., Wohlenberg, C., Wessig, C., Fogh, J., Gieselmann, V., Eckhardt, M., D’Hooge, R., & Matzner, U. (2012). Efficacy of enzyme replacement therapy in an aggravated mouse model of metachromatic leukodystrophy declines with age. Human Molecular Genetics, 21(11), 2599–2609. https://doi.org/10.1093/hmg/dds086

Messing, A. (2018). Alexander disease. Neurogenetics, Part II, 693–700. https://doi.org/10.1016/b978-0-444-64076-5.00044-2

Messing, A., Brenner, M., Feany, M. B., Nedergaard, M., & Goldman, J. E. (2012). Alexander Disease. Journal of Neuroscience, 32(15), 5017–5023. https://doi.org/10.1523/jneurosci.5384-11.2012

Messing, A., & Brenner, M. (2020). GFAP at 50. Asn Neuro, 12, 175909142094968-175909142094968. https://doi.org/10.1177/1759091420949680

Messing, A., Daniels, C. M. L., & Hagemann, T. L. (2010). Strategies for treatment in Alexander disease. Neurotherapeutics, 7(4), 507–515. https://doi.org/10.1016/j.nurt.2010.05.013

Messing, A., Goldman, J. E., Johnson, A. B., & Brenner, M. (2001). Alexander Disease: New Insights From Genetics. Journal of Neuropathology & Experimental Neurology, 60(6), 563–573. https://doi.org/10.1093/jnen/60.6.563

Middeldorp, J., & Hol, E. M. (2011). GFAP in health and disease. Progress in Neurobiology, 93(3), 421–443. https://doi.org/10.1016/j.pneurobio.2011.01.005

Ozkaya, H., Akcan, A. B., Aydemir, G., Kul, M., Aydinoz, S., Karademir, F., & Suleymanoglu, S. (2012). Juvenile Alexander Disease: a Case Report. The Eurasian Journal of Medicine, 44(1), 46–50. https://doi.org/10.5152/eajm.2012.10

Pareyson, D., Fancellu, R., Mariotti, C., Romano, S., Salmaggi, A., Carella, F., Girotti, F., Gattellaro, G., Carriero, M. R., Farina, L., Ceccherini, I., & Savoiardo, M. (2008). Adult-onset Alexander disease: a series of eleven unrelated cases with review of the literature. Brain, 131(9), 2321–2331. https://doi.org/10.1093/brain/awn178

Pascual, J. M. (2017). Alexander Disease. Cambridge University Press EBooks, 184–187. https://doi.org/10.1017/9781107323704.049

Prust, M., Wang, J., Morizono, H., Messing, A., Brenner, M., Gordon, E., Hartka, T., Sokohl, A., Schiffmann, R., Gordish-Dressman, H., Albin, R., Amartino, H., Brockman, K., Dinopoulos, A., Dotti, M. T., Fain, D., Fernandez, R., Ferreira, J., Fleming, J., & Gill, D. (2011). GFAP mutations, age at onset, and clinical subtypes in Alexander disease. Neurology, 77(13), 1287–1294. https://doi.org/10.1212/wnl.0b013e3182309f72

Quinlan, R. A., Brenner, M., Goldman, J. E., & Messing, A. (2007). GFAP and its role in Alexander disease. Experimental Cell Research, 313(10), 2077–2087. https://doi.org/10.1016/j.yexcr.2007.04.004

Scheller, E. L., & Krebsbach, P. H. (2009). Gene Therapy: Design and Prospects for Craniofacial Regeneration. Journal of Dental Research, 88(7), 585–596. https://doi.org/10.1177/0022034509337480

Scoles, D. R., Minikel, E. V., & Pulst, S. M. (2019). Antisense oligonucleotides. Neurology Genetics, 5(2), e323. https://doi.org/10.1212/nxg.0000000000000323

Soderquist, R. G., & Mahoney, M. J. (2010). Central nervous system delivery of large molecules: challenges and new frontiers for intrathecally administered therapeutics. Expert Opinion on Drug Delivery, 7(3), 285–293. https://doi.org/10.1517/17425240903540205

Sosunov, A. A., McKhann, G. M., & Goldman, J. E. (2017). The origin of Rosenthal fibers and their contributions to astrocyte pathology in Alexander disease. Acta Neuropathologica Communications, 5(1). https://doi.org/10.1186/s40478-017-0425-9

Southwell, A. L., Skotte, N. H., Bennett, C. F., & Hayden, M. R. (2012). Antisense oligonucleotide therapeutics for inherited neurodegenerative diseases. Trends in Molecular Medicine, 18(11), 634–643. https://doi.org/10.1016/j.molmed.2012.09.001

Springer, S., Erlewein, R., Naegele, T., Becker, I., Auer, D., Grodd, W., & Krägeloh-Mann, I. (2000). Alexander Disease - Classification Revisited and Isolation of a Neonatal Form. Neuropediatrics, 31(2), 86–92. https://doi.org/10.1055/s-2000-7479

Srivastava S, Waldman A, Naidu S. Alexander Disease. 2002 Nov 15 [Updated 2020 Nov 12]. In: Adam MP, Mirzaa GM, Pagon RA, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2023. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1172/

Susuki, K. (2010). Myelin: A Specialized Membrane for Cell Communication. Nature.com. https://www.nature.com/scitable/topicpage/myelin-a-specialized-membrane-for-cell-communication-14367205/

Tunkel, A. R., & Pradhan, S. K. (2002). Central nervous system infections in injection drug users. Infectious Disease Clinics of North America, 16(3), 589–605. https://doi.org/10.1016/s0891-5520(02)00015-6

Van der Knaap, M. S., Wolf, N. I., & Heine, V. M. (2016). Leukodystrophies. Neurology: Clinical Practice, 6(6), 506–514. https://doi.org/10.1212/CPJ.0000000000000289

Villoslada, P., & Martinez-Lapiscina, E. H. (2019). Remyelination: a good neuroprotective strategy for preventing axonal degeneration? Brain, 142(2), 233–236. https://doi.org/10.1093/brain/awy349

Walters, B. J., Azam, A. B., Gillon, C. J., Josselyn, S. A., & Zovkic, I. B. (2016). Advanced In vivo Use of CRISPR/Cas9 and Anti-sense DNA Inhibition for Gene Manipulation in the Brain. Frontiers in Genetics, 6. https://doi.org/10.3389/fgene.2015.00362

Yoshida, T., Sasaki, M., Yoshida, M., Namekawa, M., Okamoto, Y., Tsujino, S., Sasayama, H., Mizuta, I., Nakagawa, M., & Alexander Disease Study Group in Japan (2011). Nationwide survey of Alexander disease in Japan and proposed new guidelines for diagnosis. Journal of neurology, 258(11), 1998–2008. https://doi.org/10.1007/s00415-011-6056-3

Zang, L., Wang, J., Jiang, Y., Gu, Q., Gao, Z., Yang, Y., Xiao, J., & Wu, Y. (2013). Follow-up study of 22 Chinese children with Alexander disease and analysis of parental origin of de novo GFAP mutations. Journal of Human Genetics, 58(4), 183–188. https://doi.org/10.1038/jhg.2012.152

Published

11-30-2023

How to Cite

Reddy, A., & Erler, J. (2023). Alexander Disease: Scientific Advancement and Therapeutic Intervention in Rare Disease Research. Journal of Student Research, 12(4). https://doi.org/10.47611/jsrhs.v12i4.5764

Issue

Section

HS Review Articles