The Role and Therapeutic Potential of α-secretase in Alzheimer’s Disease
DOI:
https://doi.org/10.47611/jsrhs.v12i4.5752Keywords:
Alzheimer's, Alzheimer's Disease, alzheimer's, alzheimer's disease, neurodegeneration, neurology, neurobiology, secretase, alpha-secretase, therapeutic potential, AD, review, literature review, α-secretase, dementiaAbstract
Currently, more than six million Americans suffer from Alzheimer's Disease (AD), a number that is set to become 12.7 million by 2050. But despite killing more people than breast cancer and prostate cancer combined, there are no available pharmaceuticals that can cure AD, halt its pathogenesis, or reverse its effects. Therefore, the need for a thorough understanding of the physiological mechanisms behind AD progression has captured the attention of countless researchers and clinicians worldwide. In the last 30 years alone, the scientific community has made unprecedented progress towards an effective therapeutic. Notably, the amyloid cascade hypothesis has been one of the most dominating theories in recent AD research and drug discovery. The hypothesis suggests that AD’s main trigger lies in the accumulation of amyloid-beta protein fragments within brain tissue. Here, I present a review of some of the latest efforts to inhibit the production of these neurotoxic amyloid-beta peptides through the modulation of α-secretase enzyme activity in APP proteolysis.
Downloads
References or Bibliography
Selkoe DJ, Lansbury PJ Jr. Alzheimer's Disease Is the Most Common Neurodegenerative Disorder. In: Siegel GJ, Agranoff BW, Albers RW, et al., editors. Basic Neurochemistry: Molecular, Cellular and Medical Aspects. 6th edition. Philadelphia: Lippincott-Raven; 1999. Available from: https://www.ncbi.nlm.nih.gov/books/NBK27944/
MacLeod, R., Hillert, E.-K., Cameron, R. T., & Baillie, G. S. (2015). The role and therapeutic targeting of α-, β- and γ-secretase in alzheimer’s disease. Future Science OA, 1(3). https://doi.org/10.4155/fso.15.9
World Health Organization. (n.d.). Dementia. World Health Organization. https://www.who.int/news-room/fact-sheets/detail/dementia#:~:text=Dementia%20results%20from%20a%20variety,60%E2%80%9370%25%20of%20cases.
U.S. Department of Health and Human Services. (n.d.-b). What are the signs of alzheimer’s disease? National Institute on Aging. https://www.nia.nih.gov/health/what-are-signs-alzheimers-disease
Alzheimer’s Society of Canada. (2018, August). Understanding Genetics and Alzheimer’s Disease. Toronto.
Bekris, L. M., Yu, C. E., Bird, T. D., & Tsuang, D. W. (2010). Genetics of Alzheimer disease. Journal of geriatric psychiatry and neurology, 23(4), 213–227. https://doi.org/10.1177/0891988710383571
Understanding fad. Rare Dementia Support. (2020, February 27). https://www.raredementiasupport.org/familial-alzheimers-disease/understanding-fad/#:~:text=Familial%20Alzheimer%27s%20disease%20(FAD)%2C,FAD%20usually%20occurs%20much%20earlier
De Strooper, B., & Karran, E. (2016). The cellular phase of alzheimer’s disease. Cell, 164(4), 603–615. https://doi.org/10.1016/j.cell.2015.12.056
World alzheimer report 2014 - Alzint.org. (n.d.). https://www.alzint.org/u/WorldAlzheimerReport2014.pdf
U.S. Department of Health and Human Services. (n.d.). Amyloid structure linked to different types of alzheimer’s disease. National Institute on Aging. https://www.nia.nih.gov/news/amyloid-structure-linked-different-types-alzheimers-disease#:~:text=All%20amyloid%20plaques%20begin%20as,the%20most%20common%20in%20plaques
Walker L. C. (2020). Aβ Plaques. Free neuropathology, 1, 1-31. https://doi.org/10.17879/freeneuropathology-2020-3025
Alzheimer’s Association. (2017, March). Beta-amyloid and the amyloid hypothesis.
Liu, P. P., Xie, Y., Meng, X. Y., & Kang, J. S. (2019). History and progress of hypotheses and clinical trials for Alzheimer's disease. Signal transduction and targeted therapy, 4, 29. https://doi.org/10.1038/s41392-019-0063-8
Hardy, J., & Selkoe, D. J. (2002). The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science (New York, N.Y.), 297(5580), 353–356. https://doi.org/10.1126/science.1072994
Haass, C., Kaether, C., Thinakaran, G., & Sisodia, S. (2012). Proteolytic processing of APP within the anti-amyloidogenic (left) and amyloidogenic (right) pathways. Trafficking and Proteolytic Processing of APP. NIH. Retrieved July 24, 2023, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3331683/.
Ling, Y., Morgan, K., & Kalsheker, N. (2003). Amyloid precursor protein (APP) and the biology of proteolytic processing: Relevance to alzheimer’s disease. The International Journal of Biochemistry & Cell Biology, 35(11), 1505–1535. https://doi.org/10.1016/s1357-2725(03)00133-x
Graff-Radford, N. R., Crook, J. E., Lucas, J., Boeve, B. F., Knopman, D. S., Ivnik, R. J., Smith, G. E., Younkin, L. H., Petersen, R. C., & Younkin, S. G. (2007). Association of Low Plasma AΒ42/AΒ40 ratios with increased imminent risk for mild cognitive impairment and alzheimer disease. Archives of Neurology, 64(3), 354. https://doi.org/10.1001/archneur.64.3.354
U.S. National Library of Medicine. (n.d.). App gene: Medlineplus genetics. MedlinePlus. https://medlineplus.gov/genetics/gene/app/#:~:text=The%20APP%20gene%20provides%20instructions,cord%20(central%20nervous%20system)
O'Brien, R. J., & Wong, P. C. (2011). Amyloid precursor protein processing and Alzheimer's disease. Annual review of neuroscience, 34, 185–204. https://doi.org/10.1146/annurev-neuro-061010-113613
Sathya, M., Premkumar, P., Karthick, C., Moorthi, P., Jayachandran, K. S., & Anusuyadevi, M. (2012). Bace1 in alzheimer’s disease. Clinica Chimica Acta, 414, 171–178. https://doi.org/10.1016/j.cca.2012.08.013
Hardy, J. (2009). The amyloid hypothesis for alzheimer’s disease: A critical reappraisal. Journal of Neurochemistry, 110(4), 1129–1134. https://doi.org/10.1111/j.1471-4159.2009.06181.x
Selkoe, D. J., & Hardy, J. (2016). The amyloid hypothesis of alzheimer’s disease at 25 Years. EMBO Molecular Medicine, 8(6), 595–608. https://doi.org/10.15252/emmm.201606210
Karran, E., & De Strooper, B. (2016). The amyloid cascade hypothesis: Are we poised for Success or failure? Journal of Neurochemistry, 139, 237–252. https://doi.org/10.1111/jnc.13632
Hardy, J. A., & Higgins, G. A. (1992). Alzheimer’s disease: The amyloid cascade hypothesis. Science, 256(5054), 184–185. https://doi.org/10.1126/science.1566067
Blennow, K., Bogdanovic, N., Alafuzoff, I., Ekman, R., & Davidsson, P. (1996). Synaptic pathology in alzheimer’s disease: Relation to severity of dementia, but not to senile plaques, neurofibrillary tangles, or the ApoE4 allele. Journal of Neural Transmission, 103(5), 603–618. https://doi.org/10.1007/bf01273157
Katzman R. (1986). Alzheimer's disease. The New England journal of medicine, 314(15), 964–973. https://doi.org/10.1056/NEJM198604103141506
Lammich, S., Kojro, E., Postina, R., Gilbert, S., Pfeiffer, R., Jasionowski, M., Haass, C., & Fahrenholz, F. (1999). Constitutive and regulated α-secretase cleavage of alzheimer’s amyloid precursor protein by a disintegrin metalloprotease. Proceedings of the National Academy of Sciences, 96(7), 3922–3927. https://doi.org/10.1073/pnas.96.7.3922
Zhang, Y., Thompson, R., Zhang, H., & Xu, H. (2011). App Processing in alzheimer’s disease. Molecular Brain, 4(1), 3. https://doi.org/10.1186/1756-6606-4-3
Hooper, N. M., & Turner, A. J. (2002). The search for α-secretase and its potential as a therapeutic approach to alzheimer’s disease. Current Medicinal Chemistry, 9(11), 1107–1119. https://doi.org/10.2174/0929867023370121
Peppercorn, K. (2022). Secreted Amyloid Precursor Protein alpha: effects on the transcriptome and proteome of astrocytes and neurons that explain neuroprotection and potential for a therapeutic for Alzheimer’s disease (thesis). University of Otago, Dunedin.
Dorard, E., Chasseigneaux, S., Gorisse-Hussonnois, L., Broussard, C., Pillot, T., & Allinquant, B. (2018). Soluble Amyloid Precursor Protein Alpha Interacts with alpha3-Na, K-ATPAse to Induce Axonal Outgrowth but Not Neuroprotection: Evidence for Distinct Mechanisms Underlying these Properties. Molecular neurobiology, 55(7), 5594–5610. https://doi.org/10.1007/s12035-017-0783-0
Dar, N. J., & Glazner, G. W. (2020). Deciphering the neuroprotective and neurogenic potential of soluble amyloid precursor protein Alpha (sAPPα). Cellular and Molecular Life Sciences, 77(12), 2315–2330. https://doi.org/10.1007/s00018-019-03404-x
De Strooper, B., Vassar, R., & Golde, T. (2010). The secretases: enzymes with therapeutic potential in Alzheimer disease. Nature reviews. Neurology, 6(2), 99–107. https://doi.org/10.1038/nrneurol.2009.218
Skovronsky, D. M., Moore, D. B., Milla, M. E., Doms, R. W., & Lee, V. M. (2000). Protein kinase C-dependent alpha-secretase competes with beta-secretase for cleavage of amyloid-beta precursor protein in the trans-golgi network. The Journal of biological chemistry, 275(4), 2568–2575. https://doi.org/10.1074/jbc.275.4.2568
Postina, R., Schroeder, A., Dewachter, I., Bohl, J., Schmitt, U., Kojro, E., Prinzen, C., Endres, K., Hiemke, C., Blessing, M., Flamez, P., Dequenne, A., Godaux, E., van Leuven, F., & Fahrenholz, F. (2004). A disintegrin-metalloproteinase prevents amyloid plaque formation and hippocampal defects in an Alzheimer disease mouse model. The Journal of clinical investigation, 113(10), 1456–1464. https://doi.org/10.1172/JCI20864
Schroeder, A., Fahrenholz, F., & Schmitt, U. (2009). Effect of a dominant-negative form of ADAM10 in a mouse model of alzheimer’s disease. Journal of Alzheimer’s Disease, 16(2), 309–314. https://doi.org/10.3233/jad-2009-0952
Manzine, P. R., de França Bram, J. M., Barham, E. J., do Vale, F.deA., Selistre-de-Araújo, H. S., Cominetti, M. R., & Iost Pavarini, S. C. (2013). ADAM10 as a biomarker for Alzheimer's disease: a study with Brazilian elderly. Dementia and geriatric cognitive disorders, 35(1-2), 58–66. https://doi.org/10.1159/000345983
Suh, J., Choi, S. H., Romano, D. M., Gannon, M. A., Lesinski, A. N., Kim, D. Y., & Tanzi, R. E. (2013). ADAM10 missense mutations potentiate β-amyloid accumulation by impairing Prodomain chaperone function. Neuron, 80(2), 385–401. https://doi.org/10.1016/j.neuron.2013.08.035
Endres, K., & Fahrenholz, F. (2010). Upregulation of the α-secretase ADAM10 - risk or reason for hope? FEBS Journal, 277(7), 1585–1596. https://doi.org/10.1111/j.1742-4658.2010.07566.x
Yang, K., Lu, L., Liu, Y., Zhang, Q., Pu, L. J., Wang, L. J., Zhu, Z. B., Wang, Ya. N., Meng, H., Zhang, X. J., Du, R., Chen, Q. J., & Shen, W. F. (2013). Increase of ADAM10 level in coronary artery in-stent restenosis segments in diabetic Minipigs: High ADAM10 expression promoting growth and migration in human vascular smooth muscle cells via Notch 1 and 3. PLoS ONE, 8(12). https://doi.org/10.1371/journal.pone.0083853
Caescu, C. I., Jeschke, G. R., & Turk, B. E. (2009). Active-site determinants of substrate recognition by the metalloproteinases TACE and ADAM10. Biochemical Journal, 424(1), 79–88. https://doi.org/10.1042/bj20090549
Saftig, P., & Reiss, K. (2011). The “A disintegrin and metalloproteases” ADAM10 and adam17: Novel drug targets with therapeutic potential? European Journal of Cell Biology, 90(6–7), 527–535. https://doi.org/10.1016/j.ejcb.2010.11.005
Atapattu, L., Saha, N., Chheang, C., Eissman, M. F., Xu, K., Vail, M. E., Hii, L., Llerena, C., Liu, Z., Horvay, K., Abud, H. E., Kusebauch, U., Moritz, R. L., Ding, B.-S., Cao, Z., Rafii, S., Ernst, M., Scott, A. M., Nikolov, D. B., … Janes, P. W. (2016). An activated form of ADAM10 is tumor selective and regulates cancer stem-like cells and tumor growth. Journal of Experimental Medicine, 213(9), 1741–1757. https://doi.org/10.1084/jem.20151095
Ge, X., Cui, H., Zhou, Y., Yin, D., Feng, Y., Xin, Q., Xu, X., Liu, W., Liu, S., & Zhang, Q. (2017). Mir-320A modulates cell growth and chemosensitivity via regulating ADAM10 in Gastric cancer. Molecular Medicine Reports, 16(6), 9664–9670. https://doi.org/10.3892/mmr.2017.7819
Zhu, X., Li, X., Zhu, M. et al. Metalloprotease Adam10 suppresses epilepsy through repression of hippocampal neuroinflammation. J Neuroinflammation 15, 221 (2018). https://doi.org/10.1186/s12974-018-1260-z
Wetzel, S., Seipold, L., & Saftig, P. (2017). The metalloproteinase ADAM10: A useful therapeutic target? Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1864(11), 2071–2081. https://doi.org/10.1016/j.bbamcr.2017.06.005
Smith, T. M., Jr, Tharakan, A., & Martin, R. K. (2020). Targeting ADAM10 in Cancer and Autoimmunity. Frontiers in immunology, 11, 499. https://doi.org/10.3389/fimmu.2020.00499
Lichtenthaler, S. F. (2010a). Alpha-secretase in alzheimer’s disease: Molecular identity, regulation and therapeutic potential. Journal of Neurochemistry, 116(1), 10–21. https://doi.org/10.1111/j.1471-4159.2010.07081.x
Marcade, M., Bourdin, J., Loiseau, N., Peillon, H., Rayer, A., Drouin, D., Schweighoffer, F., & Désiré, L. (2008). Etazolate, a neuroprotective drug linking gabaareceptor pharmacology to amyloid precursor protein processing. Journal of Neurochemistry, 106(1), 392–404. https://doi.org/10.1111/j.1471-4159.2008.05396.x
He, M., Liu, M. Y., Wang, S., Tang, Q. S., Yao, W. F., Zhao, H. S., & Wei, M. J. (2012). Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials, 35(10), 1641–1644.
Fukasawa, H., Nakagomi, M., Yamagata, N., Katsuki, H., Kawahara, K., Kitaoka, K., Miki, T., & Shudo, K. (2012). Tamibarotene: A candidate retinoid drug for alzheimer’s disease. Biological and Pharmaceutical Bulletin, 35(8), 1206–1212. https://doi.org/10.1248/bpb.b12-00314
Arribas, J., & Esselens, C. (2009). ADAM17 as a therapeutic target in multiple diseases. Current Pharmaceutical Design, 15(20), 2319–2335. https://doi.org/10.2174/138161209788682398
Elfiky, A. M., Mahmoud, A. A., Elreedy, H. A., Ibrahim, K. S., & Ghazy, M. A. (2021). Quercetin stimulates the non-amyloidogenic pathway via activation of ADAM10 and ADAM17 gene expression in aluminum chloride-induced alzheimer’s disease rat model. Life Sciences, 285, 119964. https://doi.org/10.1016/j.lfs.2021.119964
Fopiano, K. A., Tian, Y., Suggs, H., Buncha, V., Lang, L., Wang, R., Filosa, J., & Bagi, Z. (2023). Adam17 overexpression improves cerebrovascular vasoreactivity and cognitive function in the app/PS1 mouse model of alzheimer’s disease. Physiology, 38(S1). https://doi.org/10.1152/physiol.2023.38.s1.5733130
Qian, M., Shen, X., & Wang, H. (2015). The distinct role of Adam17 in App Proteolysis and microglial activation related to alzheimer’s disease. Cellular and Molecular Neurobiology, 36(4), 471–482. https://doi.org/10.1007/s10571-015-0232-4
Cheng, J., Xue, F., Cheng, C., Sui, W., Zhang, M., Qiao, L., Ma, J., Ji, X., Chen, W., Yu, X., Xi, B., Xu, F., Su, G., Zhao, Y., Hao, P., Zhang, Y., & Zhang, C. (2022b). ADAM17 knockdown mitigates while ADAM17 overexpression aggravates cardiac fibrosis and dysfunction via regulating ACE2 shedding and myofibroblast transformation. Frontiers in Pharmacology, 13. https://doi.org/10.3389/fphar.2022.997916
Saad, M. I., McLeod, L., Hodges, C., Vlahos, R., Rose-John, S., Ruwanpura, S., & Jenkins, B. J. (2021). ADAM17 deficiency protects against pulmonary emphysema. American Journal of Respiratory Cell and Molecular Biology, 64(2), 183–195. https://doi.org/10.1165/rcmb.2020-0214oc
Caccamo, A., Oddo, S., Billings, L. M., Green, K. N., Martinez-Coria, H., Fisher, A., & LaFerla, F. M. (2006). M1 receptors play a central role in modulating AD-like pathology in transgenic mice. Neuron, 49(5), 671–682. https://doi.org/10.1016/j.neuron.2006.01.020
Ratia, M., Giménez-Llort, L., Camps, P., Muñoz-Torrero, D., Pérez, B., Clos, M. V., & Badia, A. (2013). Huprine X and huperzine A improve cognition and regulate some neurochemical processes related with Alzheimer's disease in triple transgenic mice (3xTg-AD). Neuro-degenerative diseases, 11(3), 129–140. https://doi.org/10.1159/000336427
Calligaris, M., Cuffaro, D., Bonelli, S., Spanò, D. P., Rossello, A., Nuti, E., & Scilabra, S. D. (2021). Strategies to target ADAM17 in disease: From its discovery to the Irhom Revolution. Molecules, 26(4), 944. https://doi.org/10.3390/molecules26040944
Chou, C. W., Huang, Y. K., Kuo, T. T., Liu, J. P., & Sher, Y. P. (2020). An Overview of ADAM9: Structure, Activation, and Regulation in Human Diseases. International journal of molecular sciences, 21(20), 7790. https://doi.org/10.3390/ijms21207790
Marolda, R., Ciotti, M. T., Matrone, C., Possenti, R., Calissano, P., Cavallaro, S., & Severini, C. (2012). Substance P activates adam9 mrna expression and induces α-secretase-mediated amyloid precursor protein cleavage. Neuropharmacology, 62(5–6), 1954–1963. https://doi.org/10.1016/j.neuropharm.2011.12.025
Moss, M. L., Powell, G., Miller, M. A., Edwards, L., Qi, B., Sang, Q.-X. A., De Strooper, B., Tesseur, I., Lichtenthaler, S. F., Taverna, M., Zhong, J. L., Dingwall, C., Ferdous, T., Schlomann, U., Zhou, P., Griffith, L. G., Lauffenburger, D. A., Petrovich, R., & Bartsch, J. W. (2011). ADAM9 inhibition increases membrane activity of ADAM10 and controls α-secretase processing of amyloid precursor protein. Journal of Biological Chemistry, 286(47), 40443–40451. https://doi.org/10.1074/jbc.m111.280495
Cong, L., & Jia, J. (2011). Promoter polymorphisms which regulate ADAM9 transcription are protective against sporadic alzheimer’s disease. Neurobiology of Aging, 32(1), 54–62. https://doi.org/10.1016/j.neurobiolaging.2009.01.001
Shen, B., Wang, Y., Wang, X., Du, Y., Guo, S., & Cong, L. (2016). Estrogen induced the expression of ADAM9 through estrogen receptor α but not estrogen receptor β in cultured human neuronal cells. Gene, 576(2 Pt 2), 823–827. https://doi.org/10.1016/j.gene.2015.11.014
Weskamp, G., Cai, H., Brodie, T. A., Higashyama, S., Manova, K., Ludwig, T., & Blobel, C. P. (2002). Mice lacking the metalloprotease-disintegrin MDC9 (ADAM9) have no evident major abnormalities during development or adult life. Molecular and cellular biology, 22(5), 1537–1544. https://doi.org/10.1128/MCB.22.5.1537-1544.2002
Published
How to Cite
Issue
Section
Copyright (c) 2023 Vandana Peddapalli; Patricia Van Oosten-hawle
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.