Artificial Intelligence in early detection of Adverse Drug Reaction for Anti-psychotic drugs

Authors

  • Christy Rozene Alexander Gifted Gabber

DOI:

https://doi.org/10.47611/jsrhs.v12i4.5728

Keywords:

Antipsychotic drugs, Artificial Intelligence, Pre- clinical trials, Adverse Drug Reaction, neuroleptic drugs

Abstract

Impact of Adverse Drug Reactions (ADRs) is a major cause of concern with major economic and emotional consequences to different stakeholders like pharmaceutical companies, patients and even Governments. The development of new antipsychotic drugs is a long and extremely expensive process. The average development of Antipsychotic drugs is 7-10 years and costs millions of dollars to bring a new antipsychotic drug to market. One of the biggest challenges to this long and expensive frame is ADRs. Considering the conceptualization of the drug to its final delivery to patients is complex and time consuming, use of advanced technologies like Artificial Intelligence can be a game changer and a win-win situation for all stakeholders. This review article aims to highlight the use of artificial intelligence (AI) in discovery and development of antipsychotic drugs with focus on the “Pre-Clinical Research” phase.

Downloads

Download data is not yet available.

References or Bibliography

All Ask a Doctor Forums And Medical Communities - MedHelp. (n.d.). https://www.medhelp.org/forums/list

Alvarez-Mon, M. A., Donat-Vargas, C., Santoma-Vilaclara, J., De Anta, L., Goena, J., Sánchez-Bayona, R., Mora, F. a. L., Ortega, M. A., Lahera, G., Rodriguez-Jimenez, R., Quintero, J., & Alvarez-Mon, M. (2021). Assessment of antipsychotic medications on social media: Machine Learning study. Frontiers in Psychiatry, 12. https://doi.org/10.3389/fpsyt.2021.737684

Biswas, N., & Chakrabarti, S. (2020). Artificial Intelligence (AI)-Based Systems Biology approaches in Multi-Omics data analysis of cancer. Frontiers in Oncology, 10. https://doi.org/10.3389/fonc.2020.588221

Chen, H., Engkvist, O., Wang, Y., Olivecrona, M., & Blaschke, T. (2018). The rise of deep learning in drug discovery. Drug Discovery Today, 23(6), 1241–1250. https://doi.org/10.1016/j.drudis.2018.01.039

Corley, C. D., Cook, D. J., Mikler, A. R., & Singh, K. P. (2010). Using web and social media for influenza surveillance. In Advances in Experimental Medicine and Biology (pp. 559–564). https://doi.org/10.1007/978-1-4419-5913-3_61

Cui, M., & Zhang, D. Y. (2021). Artificial intelligence and computational pathology. Laboratory Investigation, 101(4), 412–422. https://doi.org/10.1038/s41374-020-00514-0

DailyStrength: Online support groups and forums. (2023, August 23). https://www.dailystrength.org/

Das, P. J., & Mazumder, D. H. (2023a). An extensive survey on the use of supervised machine learning techniques in the past two decades for prediction of drug side effects. Artificial Intelligence Review. https://doi.org/10.1007/s10462-023-10413-7

Das, P. J., & Mazumder, D. H. (2023b). An extensive survey on the use of supervised machine learning techniques in the past two decades for prediction of drug side effects. Artificial Intelligence Review, 56(9), 9809–9836. https://doi.org/10.1007/s10462-023-10413-7

Fang, Z., & Peltz, G. (2022). An automated multi-modal graph-based pipeline for mouse genetic discovery. Bioinformatics, 38(13), 3385–3394. https://doi.org/10.1093/bioinformatics/btac356

Gao, F., Huang, K., & Xing, Y. (2022). Artificial intelligence in Omics. Genomics, Proteomics & Bioinformatics, 20(5), 811–813. https://doi.org/10.1016/j.gpb.2023.01.002

GBD results. (n.d.-a). Institute for Health Metrics and Evaluation. https://vizhub.healthdata.org/gbd-results/

GBD results. (n.d.-b). Institute for Health Metrics and Evaluation. https://vizhub.healthdata.org/gbd-results/

He, J., Nguyen, D. Q., Akhondi, S. A., Druckenbrodt, C., Thorne, C., Hoessel, R., Afzal, Z., Zhai, Z., Fang, B., Yoshikawa, H., Albahem, A., Cavedon, L., Cohn, T., Baldwin, T., & Verspoor, K. (2021). CHEMU 2020: Natural Language Processing Methods are Effective for information extraction from chemical patents. Frontiers in Research Metrics and Analytics, 6. https://doi.org/10.3389/frma.2021.654438

Huang, J., Lee, W., & Lee, K. (2022). Predicting Adverse Drug Reactions from Social Media Posts: Data Balance, Feature Selection and Deep Learning. Healthcare, 10(4), 618. https://doi.org/10.3390/healthcare10040618

Iqbal, E., Mallah, R., Jackson, R., Ball, M., Ibrahim, Z., Broadbent, M., Dzahini, O., Stewart, R., Johnston, C., & Dobson, R. (2015a). Identification of Adverse Drug Events from Free Text Electronic Patient Records and Information in a Large Mental Health Case Register. PLOS ONE, 10(8), e0134208. https://doi.org/10.1371/journal.pone.0134208

Iqbal, E., Mallah, R., Jackson, R., Ball, M., Ibrahim, Z., Broadbent, M., Dzahini, O., Stewart, R., Johnston, C., & Dobson, R. (2015b). Identification of Adverse Drug Events from Free Text Electronic Patient Records and Information in a Large Mental Health Case Register. PLOS ONE, 10(8), e0134208. https://doi.org/10.1371/journal.pone.0134208

Jeong, L., Lee, M., Eyre, B., Balagopalan, A., Rudzicz, F., & Gabilondo, C. (2023). Exploring the use of natural language processing for objective assessment of disorganized speech in schizophrenia. Psychiatric Research and Clinical Practice, n/a. https://doi.org/10.1176/appi.prcp.20230003

Kass-Hout, T., & Alhinnawi, H. (2013). Social media in public health. British Medical Bulletin, 108(1), 5–24. https://doi.org/10.1093/bmb/ldt028

Mental Health and Substance Use. (2021). Comprehensive Mental Health Action Plan 2013-2030. www.who.int. https://www.who.int/publications/i/item/9789240031029

Noé, F., Tkatchenko, A., Müller, K., & Clementi, C. (2020a). Machine learning for molecular simulation. Annual Review of Physical Chemistry, 71(1), 361–390. https://doi.org/10.1146/annurev-physchem-042018-052331

Noé, F., Tkatchenko, A., Müller, K., & Clementi, C. (2020b). Machine learning for molecular simulation. Annual Review of Physical Chemistry, 71(1), 361–390. https://doi.org/10.1146/annurev-physchem-042018-052331

Polanski, J. (2022a). Unsupervised Learning in Drug Design from Self-Organization to Deep Chemistry. International Journal of Molecular Sciences, 23(5), 2797. https://doi.org/10.3390/ijms23052797

Polanski, J. (2022b). Unsupervised Learning in Drug Design from Self-Organization to Deep Chemistry. International Journal of Molecular Sciences, 23(5), 2797. https://doi.org/10.3390/ijms23052797

Qureshi, R., Irfan, M., Gondal, T. M., Khan, S., Wu, J., Hadi, M. U., Heymach, J. V., Le, X., Yan, H., & Alam, T. (2023). AI in drug discovery and its clinical relevance. Heliyon, 9(7), e17575. https://doi.org/10.1016/j.heliyon.2023.e17575

Rajkomar, A., Oren, E., Chen, K., Dai, A. M., Hajaj, N., Hardt, M., Liu, P. J., Liu, X., Marcus, J., Sun, M., Sundberg, P., Yee, H., Zhang, K., Zhang, Y., Flores, G., Duggan, G. E., Irvine, J., Le, Q. V., Litsch, K., . . . Dean, J. M. (2018a). Scalable and accurate deep learning with electronic health records. Npj Digital Medicine, 1(1). https://doi.org/10.1038/s41746-018-0029-1

Rajkomar, A., Oren, E., Chen, K., Dai, A. M., Hajaj, N., Hardt, M., Liu, P. J., Liu, X., Marcus, J., Sun, M., Sundberg, P., Yee, H., Zhang, K., Zhang, Y., Flores, G., Duggan, G. E., Irvine, J., Le, Q. V., Litsch, K., . . . Dean, J. M. (2018b). Scalable and accurate deep learning with electronic health records. Npj Digital Medicine, 1(1). https://doi.org/10.1038/s41746-018-0029-1

Reps, J., Garibaldi, J. M., Aickelin, U., Gibson, J. E., & Hubbard, R. (2015). A supervised adverse drug reaction signalling framework imitating Bradford Hill’s causality considerations. Journal of Biomedical Informatics, 56, 356–368. https://doi.org/10.1016/j.jbi.2015.06.011

Sarker, A., Ginn, R., Nikfarjam, A., O’Connor, K., Smith, K., Jayaraman, S., Upadhaya, T., & Gonzalez, G. (2015). Utilizing social media data for pharmacovigilance: A review. Journal of Biomedical Informatics, 54, 202–212. https://doi.org/10.1016/j.jbi.2015.02.004

Van Tran, T. T., Wibowo, A. S., Tayara, H., & Chong, K. T. (2023). Artificial intelligence in Drug toxicity Prediction: Recent advances, challenges, and future perspectives. Journal of Chemical Information and Modeling, 63(9), 2628–2643. https://doi.org/10.1021/acs.jcim.3c00200

Vatansever, S., Schlessinger, A., Wacker, D., Kaniskan, H. Ü., Jin, J., Zhou, M., & Zhang, B. (2020). Artificial intelligence and machine learning‐aided drug discovery in central nervous system diseases: State‐of‐the‐arts and future directions. Medicinal Research Reviews, 41(3), 1427–1473. https://doi.org/10.1002/med.21764

Wang, C., Lin, P., Cheng, C. L., Tai, S. H., Yang, Y. H. K., & Chiang, J. (2019a). Detecting potential adverse drug reactions using a deep neural network model. Journal of Medical Internet Research, 21(2), e11016. https://doi.org/10.2196/11016

Wang, C., Lin, P., Cheng, C. L., Tai, S. H., Yang, Y. H. K., & Chiang, J. (2019b). Detecting potential adverse drug reactions using a deep neural network model. Journal of Medical Internet Research, 21(2), e11016. https://doi.org/10.2196/11016

World Health Organization: WHO. (2022). Mental disorders. www.who.int. https://www.who.int/news-room/fact-sheets/detail/mental-disorders

Wu, C., Luedtke, A., Sadikova, E., Tsai, H., Liao, S., Liu, C., Gau, S. S., VanderWeele, T. J., & Kessler, R. C. (2020). Development and validation of a machine learning Individualized treatment rule in First-Episode schizophrenia. JAMA Network Open, 3(2), e1921660. https://doi.org/10.1001/jamanetworkopen.2019.21660

Yang, S., & Kar, S. (2023a). Application of Artificial Intelligence and Machine Learning in Early Detection of Adverse Drug Reactions (ADRs) and Drug-Induced Toxicity. Artificial Intelligence Chemistry, 1(2), 100011. https://doi.org/10.1016/j.aichem.2023.100011

Yang, S., & Kar, S. (2023b). Application of Artificial Intelligence and Machine Learning in Early Detection of Adverse Drug Reactions (ADRs) and Drug-Induced Toxicity. Artificial Intelligence Chemistry, 1(2), 100011. https://doi.org/10.1016/j.aichem.2023.100011

You, Y., Lai, X., Pan, Y., Zheng, H., Vera, J., Liu, S., Deng, S., & Zhang, L. (2022). Artificial intelligence in cancer target identification and drug discovery. Signal Transduction and Targeted Therapy, 7(1). https://doi.org/10.1038/s41392-022-00994-0

Zeng, X., Wang, F., Luo, Y., Kang, S., Tang, J., Lightstone, F. C., Fang, E. F., Cornell, W. D., Nussinov, R., & Cheng, F. (2022a). Deep generative molecular design reshapes drug discovery. Cell Reports Medicine, 3(12), 100794. https://doi.org/10.1016/j.xcrm.2022.100794

Zeng, X., Wang, F., Luo, Y., Kang, S., Tang, J., Lightstone, F. C., Fang, E. F., Cornell, W. D., Nussinov, R., & Cheng, F. (2022b). Deep generative molecular design reshapes drug discovery. Cell Reports Medicine, 3(12), 100794. https://doi.org/10.1016/j.xcrm.2022.100794

Published

11-30-2023

How to Cite

Alexander, C. R. (2023). Artificial Intelligence in early detection of Adverse Drug Reaction for Anti-psychotic drugs. Journal of Student Research, 12(4). https://doi.org/10.47611/jsrhs.v12i4.5728

Issue

Section

HS Review Articles