Artificial Intelligence in early detection of Adverse Drug Reaction for Anti-psychotic drugs
DOI:
https://doi.org/10.47611/jsrhs.v12i4.5728Keywords:
Antipsychotic drugs, Artificial Intelligence, Pre- clinical trials, Adverse Drug Reaction, neuroleptic drugsAbstract
Impact of Adverse Drug Reactions (ADRs) is a major cause of concern with major economic and emotional consequences to different stakeholders like pharmaceutical companies, patients and even Governments. The development of new antipsychotic drugs is a long and extremely expensive process. The average development of Antipsychotic drugs is 7-10 years and costs millions of dollars to bring a new antipsychotic drug to market. One of the biggest challenges to this long and expensive frame is ADRs. Considering the conceptualization of the drug to its final delivery to patients is complex and time consuming, use of advanced technologies like Artificial Intelligence can be a game changer and a win-win situation for all stakeholders. This review article aims to highlight the use of artificial intelligence (AI) in discovery and development of antipsychotic drugs with focus on the “Pre-Clinical Research” phase.
Downloads
References or Bibliography
All Ask a Doctor Forums And Medical Communities - MedHelp. (n.d.). https://www.medhelp.org/forums/list
Alvarez-Mon, M. A., Donat-Vargas, C., Santoma-Vilaclara, J., De Anta, L., Goena, J., Sánchez-Bayona, R., Mora, F. a. L., Ortega, M. A., Lahera, G., Rodriguez-Jimenez, R., Quintero, J., & Alvarez-Mon, M. (2021). Assessment of antipsychotic medications on social media: Machine Learning study. Frontiers in Psychiatry, 12. https://doi.org/10.3389/fpsyt.2021.737684
Biswas, N., & Chakrabarti, S. (2020). Artificial Intelligence (AI)-Based Systems Biology approaches in Multi-Omics data analysis of cancer. Frontiers in Oncology, 10. https://doi.org/10.3389/fonc.2020.588221
Chen, H., Engkvist, O., Wang, Y., Olivecrona, M., & Blaschke, T. (2018). The rise of deep learning in drug discovery. Drug Discovery Today, 23(6), 1241–1250. https://doi.org/10.1016/j.drudis.2018.01.039
Corley, C. D., Cook, D. J., Mikler, A. R., & Singh, K. P. (2010). Using web and social media for influenza surveillance. In Advances in Experimental Medicine and Biology (pp. 559–564). https://doi.org/10.1007/978-1-4419-5913-3_61
Cui, M., & Zhang, D. Y. (2021). Artificial intelligence and computational pathology. Laboratory Investigation, 101(4), 412–422. https://doi.org/10.1038/s41374-020-00514-0
DailyStrength: Online support groups and forums. (2023, August 23). https://www.dailystrength.org/
Das, P. J., & Mazumder, D. H. (2023a). An extensive survey on the use of supervised machine learning techniques in the past two decades for prediction of drug side effects. Artificial Intelligence Review. https://doi.org/10.1007/s10462-023-10413-7
Das, P. J., & Mazumder, D. H. (2023b). An extensive survey on the use of supervised machine learning techniques in the past two decades for prediction of drug side effects. Artificial Intelligence Review, 56(9), 9809–9836. https://doi.org/10.1007/s10462-023-10413-7
Fang, Z., & Peltz, G. (2022). An automated multi-modal graph-based pipeline for mouse genetic discovery. Bioinformatics, 38(13), 3385–3394. https://doi.org/10.1093/bioinformatics/btac356
Gao, F., Huang, K., & Xing, Y. (2022). Artificial intelligence in Omics. Genomics, Proteomics & Bioinformatics, 20(5), 811–813. https://doi.org/10.1016/j.gpb.2023.01.002
GBD results. (n.d.-a). Institute for Health Metrics and Evaluation. https://vizhub.healthdata.org/gbd-results/
GBD results. (n.d.-b). Institute for Health Metrics and Evaluation. https://vizhub.healthdata.org/gbd-results/
He, J., Nguyen, D. Q., Akhondi, S. A., Druckenbrodt, C., Thorne, C., Hoessel, R., Afzal, Z., Zhai, Z., Fang, B., Yoshikawa, H., Albahem, A., Cavedon, L., Cohn, T., Baldwin, T., & Verspoor, K. (2021). CHEMU 2020: Natural Language Processing Methods are Effective for information extraction from chemical patents. Frontiers in Research Metrics and Analytics, 6. https://doi.org/10.3389/frma.2021.654438
Huang, J., Lee, W., & Lee, K. (2022). Predicting Adverse Drug Reactions from Social Media Posts: Data Balance, Feature Selection and Deep Learning. Healthcare, 10(4), 618. https://doi.org/10.3390/healthcare10040618
Iqbal, E., Mallah, R., Jackson, R., Ball, M., Ibrahim, Z., Broadbent, M., Dzahini, O., Stewart, R., Johnston, C., & Dobson, R. (2015a). Identification of Adverse Drug Events from Free Text Electronic Patient Records and Information in a Large Mental Health Case Register. PLOS ONE, 10(8), e0134208. https://doi.org/10.1371/journal.pone.0134208
Iqbal, E., Mallah, R., Jackson, R., Ball, M., Ibrahim, Z., Broadbent, M., Dzahini, O., Stewart, R., Johnston, C., & Dobson, R. (2015b). Identification of Adverse Drug Events from Free Text Electronic Patient Records and Information in a Large Mental Health Case Register. PLOS ONE, 10(8), e0134208. https://doi.org/10.1371/journal.pone.0134208
Jeong, L., Lee, M., Eyre, B., Balagopalan, A., Rudzicz, F., & Gabilondo, C. (2023). Exploring the use of natural language processing for objective assessment of disorganized speech in schizophrenia. Psychiatric Research and Clinical Practice, n/a. https://doi.org/10.1176/appi.prcp.20230003
Kass-Hout, T., & Alhinnawi, H. (2013). Social media in public health. British Medical Bulletin, 108(1), 5–24. https://doi.org/10.1093/bmb/ldt028
Mental Health and Substance Use. (2021). Comprehensive Mental Health Action Plan 2013-2030. www.who.int. https://www.who.int/publications/i/item/9789240031029
Noé, F., Tkatchenko, A., Müller, K., & Clementi, C. (2020a). Machine learning for molecular simulation. Annual Review of Physical Chemistry, 71(1), 361–390. https://doi.org/10.1146/annurev-physchem-042018-052331
Noé, F., Tkatchenko, A., Müller, K., & Clementi, C. (2020b). Machine learning for molecular simulation. Annual Review of Physical Chemistry, 71(1), 361–390. https://doi.org/10.1146/annurev-physchem-042018-052331
Polanski, J. (2022a). Unsupervised Learning in Drug Design from Self-Organization to Deep Chemistry. International Journal of Molecular Sciences, 23(5), 2797. https://doi.org/10.3390/ijms23052797
Polanski, J. (2022b). Unsupervised Learning in Drug Design from Self-Organization to Deep Chemistry. International Journal of Molecular Sciences, 23(5), 2797. https://doi.org/10.3390/ijms23052797
Qureshi, R., Irfan, M., Gondal, T. M., Khan, S., Wu, J., Hadi, M. U., Heymach, J. V., Le, X., Yan, H., & Alam, T. (2023). AI in drug discovery and its clinical relevance. Heliyon, 9(7), e17575. https://doi.org/10.1016/j.heliyon.2023.e17575
Rajkomar, A., Oren, E., Chen, K., Dai, A. M., Hajaj, N., Hardt, M., Liu, P. J., Liu, X., Marcus, J., Sun, M., Sundberg, P., Yee, H., Zhang, K., Zhang, Y., Flores, G., Duggan, G. E., Irvine, J., Le, Q. V., Litsch, K., . . . Dean, J. M. (2018a). Scalable and accurate deep learning with electronic health records. Npj Digital Medicine, 1(1). https://doi.org/10.1038/s41746-018-0029-1
Rajkomar, A., Oren, E., Chen, K., Dai, A. M., Hajaj, N., Hardt, M., Liu, P. J., Liu, X., Marcus, J., Sun, M., Sundberg, P., Yee, H., Zhang, K., Zhang, Y., Flores, G., Duggan, G. E., Irvine, J., Le, Q. V., Litsch, K., . . . Dean, J. M. (2018b). Scalable and accurate deep learning with electronic health records. Npj Digital Medicine, 1(1). https://doi.org/10.1038/s41746-018-0029-1
Reps, J., Garibaldi, J. M., Aickelin, U., Gibson, J. E., & Hubbard, R. (2015). A supervised adverse drug reaction signalling framework imitating Bradford Hill’s causality considerations. Journal of Biomedical Informatics, 56, 356–368. https://doi.org/10.1016/j.jbi.2015.06.011
Sarker, A., Ginn, R., Nikfarjam, A., O’Connor, K., Smith, K., Jayaraman, S., Upadhaya, T., & Gonzalez, G. (2015). Utilizing social media data for pharmacovigilance: A review. Journal of Biomedical Informatics, 54, 202–212. https://doi.org/10.1016/j.jbi.2015.02.004
Van Tran, T. T., Wibowo, A. S., Tayara, H., & Chong, K. T. (2023). Artificial intelligence in Drug toxicity Prediction: Recent advances, challenges, and future perspectives. Journal of Chemical Information and Modeling, 63(9), 2628–2643. https://doi.org/10.1021/acs.jcim.3c00200
Vatansever, S., Schlessinger, A., Wacker, D., Kaniskan, H. Ü., Jin, J., Zhou, M., & Zhang, B. (2020). Artificial intelligence and machine learning‐aided drug discovery in central nervous system diseases: State‐of‐the‐arts and future directions. Medicinal Research Reviews, 41(3), 1427–1473. https://doi.org/10.1002/med.21764
Wang, C., Lin, P., Cheng, C. L., Tai, S. H., Yang, Y. H. K., & Chiang, J. (2019a). Detecting potential adverse drug reactions using a deep neural network model. Journal of Medical Internet Research, 21(2), e11016. https://doi.org/10.2196/11016
Wang, C., Lin, P., Cheng, C. L., Tai, S. H., Yang, Y. H. K., & Chiang, J. (2019b). Detecting potential adverse drug reactions using a deep neural network model. Journal of Medical Internet Research, 21(2), e11016. https://doi.org/10.2196/11016
World Health Organization: WHO. (2022). Mental disorders. www.who.int. https://www.who.int/news-room/fact-sheets/detail/mental-disorders
Wu, C., Luedtke, A., Sadikova, E., Tsai, H., Liao, S., Liu, C., Gau, S. S., VanderWeele, T. J., & Kessler, R. C. (2020). Development and validation of a machine learning Individualized treatment rule in First-Episode schizophrenia. JAMA Network Open, 3(2), e1921660. https://doi.org/10.1001/jamanetworkopen.2019.21660
Yang, S., & Kar, S. (2023a). Application of Artificial Intelligence and Machine Learning in Early Detection of Adverse Drug Reactions (ADRs) and Drug-Induced Toxicity. Artificial Intelligence Chemistry, 1(2), 100011. https://doi.org/10.1016/j.aichem.2023.100011
Yang, S., & Kar, S. (2023b). Application of Artificial Intelligence and Machine Learning in Early Detection of Adverse Drug Reactions (ADRs) and Drug-Induced Toxicity. Artificial Intelligence Chemistry, 1(2), 100011. https://doi.org/10.1016/j.aichem.2023.100011
You, Y., Lai, X., Pan, Y., Zheng, H., Vera, J., Liu, S., Deng, S., & Zhang, L. (2022). Artificial intelligence in cancer target identification and drug discovery. Signal Transduction and Targeted Therapy, 7(1). https://doi.org/10.1038/s41392-022-00994-0
Zeng, X., Wang, F., Luo, Y., Kang, S., Tang, J., Lightstone, F. C., Fang, E. F., Cornell, W. D., Nussinov, R., & Cheng, F. (2022a). Deep generative molecular design reshapes drug discovery. Cell Reports Medicine, 3(12), 100794. https://doi.org/10.1016/j.xcrm.2022.100794
Zeng, X., Wang, F., Luo, Y., Kang, S., Tang, J., Lightstone, F. C., Fang, E. F., Cornell, W. D., Nussinov, R., & Cheng, F. (2022b). Deep generative molecular design reshapes drug discovery. Cell Reports Medicine, 3(12), 100794. https://doi.org/10.1016/j.xcrm.2022.100794
Published
How to Cite
Issue
Section
Copyright (c) 2023 Christy Rozene Alexander
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.